Chapter 5
Fourier Methods

5.1 Boundary Value Problems

The first and foremost concept to recall here is the Fredholm alternative for the system of linear equations.
Let A be an n X n matrix and consider the systme of equation Ax = b. We know the following:

1. The system has a unique solution (in case det(A) # 0).
2. The system has no solution or the system is consistent if and only if (b,x) =0 for all x € {y : Ay = 0}.

But while solving boundary value problems, we have to find equivalent way of determining det(A) # 0.
Let us assume that the eigenvectors form a basis of R". Let Z = {e, e, €3, ....¢, } be an orthonormal basis
of eigenvectors of A. That is (e;,e;) =0if i # j and (e;,e;) = 1.

Now letb € R*. Then b =Y, bje;, where b; = (b, ¢;). Since £ is a basis of R", we assume that the solution
to be
xX=x1e1+xe2+.... +x,€,

So it is enough to solve for x}s. Now substituting this in the equation Ax = b we get

n n n n n
Z lixiei =A inei = Z biei —— inAei = Z biei
i=1 i=1 i=1 i=1 i=1
Since ey, ez, ...e, are Linearly independent, we get
7L,~x,~:b,', i= 1,2,...1/1. (11)

From the equation (1.1), we get the following assertions:

1. If zero is not an eigenvalue of A then the problem Ax = b has unique solutionx =} ; %e[. That is, if
A is non-singular, then we have unique solution. 1

2. If A, = 0 for some m. Then solutions exists if b; = 0, in which case x,, is arbitrary. Since £ is or-
thonormal, b,, = (b,e,;) = 0. Also ey, satisfies Ae,, = 0. That is solutions exists if b is orthogonal to
every solution of Ax = 0.

3. On the other hand, if b is othogonal to every solution of Ax = 0. Then 4, = 0 is an eigenvalue of A and
b,, = 0. Hence x,, is arbitrary in the equation (1.1) and infinitely many solutions exist.

4. Ttis also clear that the problem Ax = b has NO SOLUTION if 4,, = 0 and (b, e,,) # 0.
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82 5 Fourier Methods

The above method tells us that once we know the eigenvalues and eigenvectors forms basis of R”, then it is
easy to determine if the system has infinitely many solutions or there is no solution. We will show that we
can generalize the above approach to differential equations to solve a non-homogeneous boundary value
problem.

Now we consider the boundary value problem

L(y) = f(x), y(0) =0, y(1) =0

where L(y) = —y” or a self adjoint positive definit operator —(py')’ + gy for some continuous functions
p(x) > 0 and ¢(x). One can prove the same assertions as in (1)-(4) above by constructing Green’s function.
Basically one can prove that there exists unique Green’s function if L(y) = 0,y(0) = 0,y(1) = 0 has only
trivial solution. In this case the unique solution is given by

) = [ Gl nsay

In case of [, f(x)@(x)dx = 0 for all ¢ satisfying L(y) = 0, y(0) = 0,y(1) = 0, one can show that there are
infinitely many Green’s functions. Also one can show using the Sturm’s oscillation theory one can show
that there are infinitely many eigenvalues A, — o and {¢,} the sequence of eigen functions which form a
complete set for C([0,1]). In this case again one can replicate the idea of writing the solution in the form
of series Y. ¢, ¢, and find the constants ¢, so that u satisfies L(u) = f. This is known as the Fourier series
method. This way we can again see the Fredholm alternative theorems.

5.2 Fourier Series

Let C([0,1]) be the set of all continuous functions on [0, 1] equipped with inner product and norm

()= [ 1Weiax and 1512 = (7.9,

Let k(x,&) be a continuous real valued function on [0,1] x [0,1] such that k(x,&) = k(&,x) and let K :
C([0,1]) — C(]0, 1]) be defined as

K = [ K u(g)a

Then it is easy to check that K is bounded linear operator. Also it is not difficult to check that for u,v €

C([0,1]) with zero boundary values, one has
(Ku,v) = (u,Kv)
Theorem 5.2.1 The set {Ku,||u|| < 1} is compact in C([0,1]).

Proof. Since k(x, &) is continuous on closed bounded set, we have |k(x,&)| < M for some M and k(x,&) is

uniformly continuous on [0, 1] x [0, 1]. Therefore for any € > 0, there exists 0 > 0 such that

k=¥ <6 = [k(x,q) —k(»5)l <&



5.2 Fourier Series 83

Hence, for |x—y| < &, we have

|Ku(x) — Ku(y)| = ‘/ d&‘
<e [ Mg < ellul <&, Vue Bu(0) = {u: ul < 1)
Also
|Ku(x |</ Ik(x, dz;<M/ u(E)[dE < M, Vu € By (0)
Therefore, by Ascoli-Arzela theorem, we see that K(B;) is compact. Now the operator norm of X is

K|l = sup |[Kul.

[lull=1
Then we have

Theorem 5.2.2

K| = Hshlp |(Ku,u)
u||l=1

Proof. Let 1 = supj,|—; |(Ku,u)|. Then by Cauchy-Scwartz inequality, for u with [luf =1, we get
| (Kut, )| < || Kul[[Ju]| < || Kul| <[ K.
therefore 11 < ||K]|. Also using the relations

(K(u+v),u+v) = (Ku,u)+ (Ku,v) + (Kv,u) + (Kv,v)
(K (utv),u+v) <nllu+v]|?
(K(u—v),u—v) > =nlu—v|?

Using these relations, we get

4(Ku,v) = (K(u+v),u+v)— (K(u—v),u—v)
<[l vl + | —v]?]
=21 ([lul?+ Iv*)

Now taking v = ||KuH for |jul| = 1, we get

Ku

4(Ku,v) = 4(Ku, ——
[[Kuf

) = 4 Kul|
and
2n ([lull® + [IvII?) =2n(1+1) =47
which implies ||Ku|| < 7. Hence |Ku||=1n. O
Theorem 5.2.3 Either ||K|| or —||K]|| is an eigenvalue of K.

Proof. Suppose 1) = ||K|| = sup (Ku,u). Then we can assume that there exists a sequence {u,} such
ul|=1

that ||lu,|| = 1 and (Kup,u,) — ;. From the above theorem we know that {Ku,} is compact in C([0, 1]).
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Then there exists a subsequence {u,} (we can still denote with same notation!) such that Ku, converges
uniformly to a function ¢;. This uniform convergence also implies ||Ku, — @1 || — 0. Also, ||Kun|| — [|¢1])-

Moreover

0 < || Kty — piaen > = || Kutn||* + 17 |14 |* — 211 (Kt u)

= |Kun||* + 17 — 2411 (Kutn, ) = || 1* — i
Therefore ||¢;|? > u? > 0. this implies ¢; Z 0. Also since ||Ku,|| < p1, we get from the above equations
0 < [|Kuy — fyu||* < uf + 17 — 207 = 0as n — oo,

Therefore, ||Ku, — liun| — 0. Now we use the 3€ argument to show that ¢ is an eigen function.

K1 — i1 = Koy — K (Kup) + K (Kup) — pi Kuty + py Kuy, — 1 1.
This implies

0 <[IK¢r — ¢l < [[K(91 — Kuay) || + | K (Kt = physen) || + pa || Kutn — 1|
<K Kot — @1l + | K[| Kot — pasn| + pr || Kot — @1 ]| = O

Hence the proof. a
Once we obtained the eigenvalue y; and the corresponding eigen function ¢;, we define the new operator

ki(x,8) = k(x,&) — 191 (x)91(8)

and the operator K : C([0,1]) — C([0,1]) as

K0 = [ Ko Eu(E)ds

So if Kj # 0, then it is not difficult to see that K; is symmetric, self adjoint and compact and one can
proceed to get U and ¢, satisfying

U = ”SlHlp (Kiu,u).
ul|=1

Then u, < g and K; ¢ = Ur @». Moreover,

1. if (u,¢;) =0 then Kju = Ku

2. Kigr =Ko — 1 ¢1(¢1,¢1) = iy — 11 =0

3. (Kiu,¢1) = (Ku, ¢1) — i (91, 61) (e, 01) = (Ku, ¢1 — p1 (u, 1) = 0) Vu
(92,01) = 1, (K1, 01) = py (62, K101) =0

5. K¢p =Ki¢r = 2.

Therefore 1, is an eigenvalue of K. Proceeding this way, we can define

N

ko, ) = k(. &) — ilui%(x)%(é)

and

) = | o, EYu(E)dE
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This process terminates only if ||K,|| = 0. In this case for any u € C([0,1])
0=Kuu=Kf—Y 11:9:(x)(u,0;)
i=1

that is "
Ku="Y" p;(u,9;)i(x).
i=1
If ||Ky|| > O for all m, then there exists infinite sequence of eigenvalues {;} and eigen functions {¢;}.

Theorem 5.2.4 u;’s are either finite or i — 0 as i — oo.

Proof. Suppose U; are infinite sequence. suppose it is bounded from below, say |u;| > ¢ for some ¢ > 0.
Then

1K — Kl = .ur%"'.u;%z > 2

That means we have a bounded sequence {¢;} and compact K such that K¢; is not compact. Contradiction.
O

Definition 5.2.1 For any function u € C([0, 1)) the Fourier series of the function u is defined as

s

(u, i) 9.

Il
—_

The constants (u, ¢;) are called Fourier coefficients of u.

Theorem 5.2.5 Bessel’s inequality: Let f € C([0,1]) and let {¢;} be any orthonormal sequence of func-
tions in C([0,1]). Then Fourier coefficients of f satisfies

Y I(f. 8 < IfI1%, V.

i=1

Proof. Proof follows from the fact that || f — Y7, (f,¢;)@;|| > 0. Using the orthogonality of ¢/s

0<|If— Zf¢, )oil1> = 111> — Z|f¢|||<z>l||2 O

This means the sequence s, = Z [(f, (j),')|2 is increasing and bounded sequence and hence coverges to

LI(f.0)P.

Theorem 5.2.6 For any u € C([0,1)), the Fourier series of Ku converges uniformly to Ku on [0,1].

Proof. Let g, =u— Z(u,q),»)qbi. Then (gm,9;) =0 fori=1,2,...m. Also ||g|| < ||u||. Therefore,
i1

1Kgml| < tm1llgmll < [Hms1[|ull = 0, as m — eo.

That is, in the L? norm we have Kg,, — 0. This means

Ku Z(u 0K = Zuluqz 0= Y, K00)9s = ¥ (Kt, 6,6

i= i=1 i=1
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To prove the uniform convergence, note that for any g > p,
q q
Y wi(u,0)0i =K | Y (u,0:)9;
i=p i=p

Now using the fact that |Ku(x)| < M||ul|, we get

K (i(%@)@')
i=p

<

q
Zﬂi(%@)@
i=p

q
<MY |(u,¢:)]> = 0as p,g — o.
i=p

by the Bessel’s inequality. O

As a consequence we have

Remark 5.2.1 The resits will hold true if we replace the inner product by a weighted inner product. Let
the weight function w(x) € C([0,1]) and w(x) > 0 in [0,1]. Then

(u,v)y = /Olu(x)v(x)w(x)dx

5.2.1 Boundary Value problems

We consider the self-adjoint operator £u = —(pu')’ + qu where p is a differentiable function and g is
continuous function such that p(x) > 0in [0, 1]. The boundary conditions By (1)(0) =0 and B, (u)(1) =0 are
called separated boundary conditions like B (#)(0) = c¢;u(0) = cou’(0) and B2 (1) (1) = c3u(1) 4+ cqu(1) =0
for some constants ci,c,c3 and c4.

Definition 5.2.2 A function G(x,&) is called Green’s function if it satisfies

(1) G(x,&) = G(&,x) for all x,§ € [0,1]

(2) G(x,&) is twice differentiable for x < & and x > & but continuous at all x = £

(3) G(x,&) satisfies Bi(G) =0 and B2(G)(1) = 0 in the variable x

(4) The jump in the derivative of G, [%—S]IX:;; = ﬁ;)

(5) Z(G)=0forx+#E&.

We have the following existence theorem

Theorem 5.2.7 If £ (u) =0in (0,1), in (0,1), Bi(u)(0) =0, B2(u)(1) = 0 has only trivial solution, then

there exists a unique Green’s function.

Proof. Suppose there are two such functions G'(x,€) and G?(x,&). Then by taking G(x,&) = (G' —
G?)(x, &), we see that G satisfies the equation for x # & and B;(G)(0) = B2(G)(1) = 0. Moreover the
jump in dJdGdx is 0. Now we see that

—pu” _ p/u/ —qu
implies that the jump in pa;Tf(x, &) is 0. Therefore, G salisfies -Zu = 0 along with both boundary condi-

tions. Hence G(x, &) = 0. To prove the existence, let u; (x) be a solution of Zu; =0, B (u)(0) =0 and let
u, be linearly independent from u; and satisfy .Zu, = 0,B,(u)(1) =0. Let

ug (W (8)

_ oW x<§
RS A TAER
1444 =
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where W is the Wronskian of u; and u;. Then it i not difficult to verify that G(x, &) satisfies (1) — (5) and

hence is the Green’s function. O

Theorem 5.2.8 If £ (u) =0in (0,1), B;(u)(0) =0, B2(u)(1) = 0 has only trivial solution, Then the non-
homogeneous problem

Z(u) = f,B1(u)(0) = 0,B2(u)(1) = 0
has unique solution u(x) given by
) = [ Gl Epri&)ae
Proof. Proof follows by writing
) x<§
) x>¢

where G| (., &) satisfied the first boundary condition and G;(., &) satisfies the second boundary condition
along with ZG(.,&) =0, forx < & and ZG,(.,&) =0 for x > &. Writing

(x,

Glx,&) = gl( 2
2(X,

£ 1
)= [ G Q)+ [ Galx )FE)aE.
Now using Newton-Leibniz formula, it is easy to see that Zu = f. O

Define the operator K : C([0, 1]) — C([0,1]) as

Then the operator K is now continuous, symmetric on {u € C([0,1]), B1(u)(0) =0, B2(u)(1) = 0}. There-
fore, there are eigenvalues ; and eigen functions ¢; such that y; — 0 (if not finite). To show that /s are

infinite, it is enough to show that ||K,,|| # 0 for all m where
K= [ Gule EEME, Guls£) = Glx) - Lo )E)
Suppose ||K,|| = 0 for some m. Let f € C([0,1]) then
0= Kuf = Kf() ~ ¥ w599
This implies

0= 2(0) = L(Knf) = LK)~ Y i(£.00).L0: = F— Y. (f. 661
=1 =1

That is

m

fx) =Y. (f.¢)¢: € C%,

i=1
a contradiction. O
Let u; be the eigenvalues and ¢; be the corresponding eigen function of K. Then

Ui¢; =K¢ —= ;20 = LK = ¢;
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Therefore .Z¢; = ﬁq),'. That is, ul are eigenvalues and ¢; are eigen functions of .. Therefore from the

results of the previous section, we get the sequence of eigenvalues and eigen functions for the operator .#

Theorem 5.2.9 Let u € C%(0,1) such that By (u)(0) = By(u)(1) = 0. Then u = Y(u, ¢)¢; uniformly.

Proof. We have f = .Zu € C([0,1]). That is u = K f. Therefore,

u=Kf=Y (Kf,¢:)0;i=) (u.0;)¢: O

i=1 i=1

Definition 5.2.3 The set {¢;,i € N} is called complete set if for any f € C([0, 1)), there exists c; such that
n
If =Y cioill = 0asn— co.
i=1

Finally, we have the following theorem:

Theorem 5.2.10 Let {¢;} be the sequence of eigen functions of £, then {§;} is complete.

Proof. Let g be a C? function such that || f — g|| < €. By the triangle inequality

1F =Y (f 000l < IIf —gll+lle— Y. (g 0)aill + | Y (g — f- 0) il <3e
i=1 i=1

i=1

The last term is estimated as
||Z(g £,00)6i> = Z|g £o0l <If—ell?

Last inequality follows from the Bessel inequality. O

Example 5.1. For a given f € C([0,1]), find the Fourier series solution of

The corresponding eigen value problem is

—u" = Au, u(0)=u(1)=0
The eigenvalues and eigen functions are

Ay = n*7%, Pp(x) = sinnmx.
By the above theorem we can write

Jo f(x) sinnmxdx

oo 1
(x) = Z fisinnmx, where f; = =2 / f(x)sinnmxdx
i=1 0

Jo sin nxdx

Now by taking
Z cpsinnmx, ¢ = 2/ X) sinnmxdx.
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=)

If u” has Fourier series u(x) = Z b,sinnmx. Then integration by parts (twice) and using the fact that

n=1
u(0) =u(1) =0, we get
1
by, = 2/ u” (x) sinnmx
0
= —2n27r2c”
Therefore,
u’(x)=— Z e’ sinnm.
n=1

Now substituting in the equation and using the fact that ¢; is complete set, we get

J
Cp =

~ n?n?

Then one can easily check that the series Y ¢, sinnmx converges uniformly. This method is known as Fourier
series method.

Example 5.2. For a given f € C([0,1]), find the Fourier series solution of

—u" = f(x), in (0,1) «'(0) =4/(1) =0.

2

In this case the eigen values are n’ 7> and eigen functions are cosnmx, n =0, 1,2.... Now we can follows as

above to write

> 1
flx)= Z fucosnmx, fi= 2/ f(x)cosnmx.
n=0 0
If u(x) = Y ¢, cosnmx, then we can find as above
e, = f.

for n =0, ¢y is arbitrary constant only when fy = 0. Otherwise there is no solution. Therefore the solution
of the problem exists only when

/(: f(x)dx=0.

In such case, solution (s) are given by
ulx)=C+ i % COSNTX
—
where C is an arbitrary constant. This method can be applied for solving Initial boundary value problems
Example 5.3. For a given f(x), solve the problem

u— Uy =0,x€(0,1),£>0
u(x,0) = f(x),x € (0,1),
u(0,t) =0, u(1,t) =0, > 0.

Taking a cue from the above examples, we write the solution as



90

= Z ¢ (1) sinnmx.

Then X
1) = 2/ u(x,t) sinnmxdx.
0

Now as earlier applying integration by parts, we get
1
— Uy (X,1) Z n’mlc,(t)sinnmx,  u(x,1) = 2/ ¢l (t)sinnmx
Jo
Substituting in the equation we get
Z 1) +n’m cn(t)) sinntx =0

Since {sinnx} are complete set, we get the ODE
c(t) +n*m’c,(t) =0

Also X .
= 2/ u(x,0)sinnmx = 2/ Sf(x)sinnmxdx = f,
0 0

This initial value problem has unique solution

2.2

Cn(t) :fne_n t

Therefore the solution is

i SlIl nmwx

Example 5.4. For a given f(x) and g(x), solve the problem

Uy — e =0, x€(0,1),1>0

M(X,O) :f(x)v ul(xao) :g(x)a X € (07 1)7
u(0,t) =0,u(1,¢) =0, 1> 0.

We follow the steps as above to write
= Z ¢y (t) sinnmx.

In this case we see that ¢, (¢) satisfies

( )+n2nzcn( ) =0, Cn(o) = fus C::(O) =&n

5 Fourier Methods

where f, and g, are the Fourier coefficients of f(x) and g(x) respectively. These c),s are uniquely deter-

mined.

In general if .% is a linear differential operator which has eigenvalues and eigen functions that form com-

plete set, then we can find the solution the following initial boundary value problems by the method of
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Fourier series. O
Problem 1: For a given f(x),g(x) € C([0,1]), and h(x,t) € C([0, 1] x [0,0)) find a solution of the IBVP of
the parabolic equation:

u — L (u) =h(x,1), x€ (0,1), >0

u(x,0) = f(x),x € (0,1),
u(0,6) =0,u(1,1) =0,1>0.

Problem 2: For a given f(x),g(x) € C([0,1]) and A(x,t) € C([0,1] x [0,e)), find a solution of IBVP of the
wave equation:

uy — L (u) =h(x,t), x€(0,1),t>0

M(X,O) :f(x)v ul(xao) :g(x)a X € (07 1)7
u(0,t) =0,u(1,¢) =0, 1> 0.

We can also solve the elliptic problems on rectanglular domains using this method. For example

Example 5.5. Consider the problem on the square Q = [0,1] x [0, 1].
—Uge — Uy = f(x,y)inQ, wu=O0onthelinesx=0,x=1andy=0,y=1.
As carlier, we first consider the cigenvalue problem. That is,

—Up—Uyy =Auin Q, u=O0onthelinesx=0,x=1landy=0,y=1.

™
™

By separating the variables, taking u(x,y) = ) w;(y)v;j(x) = ) w;(y)sin(jmx) we get

1 J

1

J

Ms

(272w + (w))yy) sin(jmx) = Z?Lw] sin(jmx)
1

J
This implies ({sin jzx}; forms basis of L?)
(wilyy = (A =72 2)wj, w;(0) = 0, w;(1) = 0.

Solving this we get
wi(y) = sin(kzy), provided A — j*n* = k*m%, k=1,2,...

Therefore the eigenvalues are A = (j2+k*)%?, j,k=1,2,3... and eigen functions are w j = sin(j7y) sin(k7x).

Then we can write the eigen function expansion of f(x,y) as

flxy Z fjkn sin(jzx)sin(kmy), where fjk—4/ / Sf(x,y)sin jrxsinkmwydxdy
Jik=1

are the Fourier coefficients. Then by writing u(x,y) as

u(x,y) Z cjksin(jmx)sin(kmy)
Jik=1
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and substituting in the equation, we get
2 2y2
cix(J"+k)m = fix

The problem has unique solution

S Ji o
u(x,y) = chZ=1 m sin(jmx) sin(kmy).

Singular SLP problems do not require boundary condition to get the symmetry of the corresponding integral
operator. For example

L) =—(1-2) xe(=1,1)

It is easy to verify (using integration by parts) that
(Lu,v) = (u,£v), u,veC([-1,1])
Therefore the operator .Z is self-adjoint on C([—1, 1]). The corresponding eigenvalue problem
Lu=2u

has eigenvalues n(n+ 1) and eigenfunctions are the Legendre polynomials P,(x). Also from the well ap-
proximation theorems we know that every continuous function can be uniformly approximated by Legendre
polynomials.So the following

Example 5.6. Solve the problem
— (1 =) = fx), x € [-1,1]

‘1

Writing f(x) =Y. f,P.(x), where, f, = % and u(x) =Y ¢, P,(x) and substituting in the equation,
J—1"%n

we get

con(n+1) = fy

from this one gets ¢, uniquely. 0O
Similarly, Bessel functions, Hermite and Laguerre polynomials are sued to find solutions which are also
known as Fourier Series solutions.

From above examples we see that we can find the eigenvalues and eigen functions in dimension one easily.
In case of two or higher dimensions we can find these eigen values and eigen functions only in special
types of domains like rectangles. In general, if €2 is any bounded domain in R”, then we may not be able
to find eigenfunctions explicitly. So it would be interesting to study if such eigenvalues and eigen functions
exist. We have seen that this requires the understanding of Green’s function for such domains. In the next
section we will study the Green’s function for the Laplacian operator.
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5.2.2 Unbounded domains

consider the heat condution in a semi-infinite insulated rod with uniform cross section with forced

boundary condition at one end and no internal sources.

U =k, 0 < x<oo, t >0
u(0,t) =0, r > 0, u(x,t) bounded as x — oo
u(x,0) = f(x),x > 0.

From the above discussion, we get the following eigenvalue problem

¢’ =-A%¢, x>0
¢(0) =0, ¢(x) bounded as x — oo.

Then we see that for every A > 0, ¢, (x) = Cj sin(Ax),C;, € R is a nontrivial solution. Therefore by taking
u(x,t) = ¢ ()T (x)

we see that
T(1)=e 2.

Therefore we have a continuum of functions satisfying the heat equation and boundary conditions
. _ 12
u(x,r,A) = Cy sin(Ax)e X

since the equation is linear, by the superposition principle we must use an integral-the continuous analogue
of a sum or series. Thus a candidate for the solution u(x,#) have the form

u(x, ) = /0 " B(A)sin(Ax)e A an
Then the initial condition implies
F(x) = u(x,0) = /:B(z) Sin(Ax)dA, x> 0.
If such B(A) exists then by the fourier integral theorem, we recongnize B(A) as

B(A) = % /0 " F(x) sin(Ax)dx,

Theorem 5.2.11 Fourier Integral Theorem: Let f(x) be a piecewise continuous and integrable function on
R. Then

/0 A cos(Ax) + B(A)sin(Ax)dA = = [f(xT) + f(x )], x €R

N —

where

AQR) = % /R F(x) cos(Ax)dx, B(A) = % /R F(x) sin(Ax)dx.

From the above theorem it is easy to see that if f(x) is odd function then A(A) = 0 and B(A) =
2 [ f(x)sin(Ax)dx. If f(x) is even function then B(A) = 0 and A(A) = 2 [ f(x)cos(Ax)dx. So given

B
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any function defined on (0,e0), we can extend it as odd function OR even function. This leads to the defi-

nition of Fourier sine integral and Fourier cosine integral.
Example 5.7. Solve the IBVP of heat equation on semi-infinite rod
Uy =ktyy, 0 <x<oo,t>0
u(0,t) =0, r >0, u(x,t) bounded as x — oo

Ay O<x<1,
0 x>1.

u(x,0) =

This means a unit length of the rod has initial temparature Ap and then it is O for the rest. Then solution is

given by .
u(x,t) = / B(A)sin(Ax)e *Han
0
where 5 pee 24
_2 - _ 240, _
B()=~ /0 F)sin(Ax)dx = 52 (1~ cos(20).
Hence
u(r,r) = 2A0 [T UZC0SAB)) g o2y
T Jo A
O

In case of the the domain is whole R, then the problem looks like
Example 5.8. Consider the initial value problem of the heat equation in the whole R:
ur =k, x ER, £ >0

|u(x,)| bounded as x — oo

u(x,0) = f(x),x > 0.
In this case we get the eigenvalue problem as

¢"=—-A%¢,xeR
¢ (x) bounded as x — oo,

It is easy to see that every A > 0 is an eigenvalue and A, cos(Ax),B; sin(Ax) where A, ,B) € R, are eigen
functions. Here, we have

u(x,t) = /OOA(A)COS(Ax) +B(A)sin(Ax)dA, x € R.
0

Attime t = 0, we get

Flx) = / A(L)cos(Ax) +B(A) sin(Ax)dA

0
Therefore, _ _
AL) = l/ f(x)cos(Ax)dx, B(A) = l/ F(x)sin(Ax)dx.

T JR T JR

Next we consider the wave equation in (0,c0):

Example 5.9. consider the initial boundary value problem for the wave equation on (0, ):
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Uy =k, 0 < x < oo, t >0
u(0,¢) =0, 1> 0, |u(x,r)| bounded as x — oo
u(x,0) = f(x), ur(x.0) = g(x), x € (0,00).

In this case by writing u(x,#) = T(¢)¢(x) we get

0" +1%20 =0,x>0
T +A%T =0,1>0
¢(0) =0,]¢(x)| is bounded.

The solutions are

05, (x) = sin(Ax), Ty, (1) = A, cos(AVkt) + By sin(Avkt),

Therefore

uwr) = /0 " 1A cos(AVAt) + By, sin(Av/kr)] sin(Ax)dA.

Then A, , B are determined from the initial conditions

u(x,0) = f(x) = '/:AA sin(Ax)dA,x > 0,

i (x,0) = g(x) = /:/1\/%3l sin(Ax)dA,x > 0,

By the Fourier integral theorem, we get

2
Tk

AL) = % /0 " F(x)sin(Ax)dx, B(A) = /0 " g(x) sin(Ax)dx.

so if f(x) is integrable, the both these integrals exist.

5.2.3 Exercises

1. Solve the following BVPs using eigenfunction expansions, shifting the data if necessary.
(@) —u"=1u0)=u(l)=0 (b) —u" =" u(0)=u(l)=1
(c) —u"=x,u(0)=u(1)=0 (d) —u"+2u=1,u(0)=u(1)=0
1
(&) —u' =, u(0) =u(1) =0 (f) —u"+2u =3 —x, u(0) = u(2) =0.
2. Solve the following BVPs using eigenfunction expansion method:

(i) —u" = f(x),0<x<,d(0)=a, d()=b (ii)u"+u= f(x), u'(0) =a,u'(l) =b.

3. Solve the following IBVP using the Fourier series method:

(@) up—uy =0,0<x<1,t>0 (b) up —uy =sint,0<x<1,1>0
u(x,0) =x,0<x <1, u(x,0) =x, 0 <x <1,
u(0,¢) =0, u(1,r) =0, > 0. u(0,1) =0, u(1,1) =0, > 0.

4. Solve the IBVP by shifting the data:
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10.
11.

12.

13.

14.

15.

16.

5 Fourier Methods

u—iy =0,0<x<1,t>0
u(x,0)=x, 0 <x <1,
u(0,¢) =0, u(1,t) = cost,t > 0.

Solve the IBVP using Fourier series method

(@) up—uy =0,0<x<1,t>0 (b) up — Uy :%—x,0<x< 1,t >0
u(x,0) =x(l—x), 0<x <1, u(x,0) =x(l—x), 0<x <1,
94(0,1) =0, 34(1,1) =0, > 0. 9u(0,1) =0, 9%(1,1) =0, > 0.

Solve the BVP using the Fourier series method:
—u" = J5x(x* —7?), —w<x< 7w, u(—x) =u(x), ' (—x) =i (1)
Solve the IBVP using the Fourier series method
U — gy = -x(X2 —2),~w <x < 7t >0
t XX 710 9 )

u(x,0) =25 —r<x<m,

W (g 1) = 9(x,1), u(—m,t) = u(m,t), > 0.

Solve the IBVP using Fourier series method

(@) uy — e =0,0<x<1,t>0 (b) uy — Py = 100,0 < x < 1,1 >0
u(x,0) =x(1—x), 0<x <1, u(x,0) =x(1—x),0<x <1,
9 (x,0) =x, u(0,1) = u(l,t) =0,¢ > 0. 9 (x,0) =x, u(0,¢) = u(l,t) =0, > 0.

Let © be a unit square in R?, and let f: @ — R be f(x) = x1x2(} —x1)(1 —x1)(1 —x2). Then solve
the BVP
—Au=f(x)inQ, u=00ndQ.

Repeat the above exercise with f(x) replaced by f(x) = x; (1 —x1)>.
Solve the BVP: —Au = f(x) in B1(0), u = 0 on dB;(0) with
(1) f(x) = 1= /xf =23 (id) f(x) =\ /o] + 3.
Solve the following BVP
Au=0, 0<x<a,0<y<bsatisfying the boundary conditions
1(0,y) = 0, u(x,0) = 0,u(x,b) =0, % = sin’ %
The boundaries of the rectangle 0 < x < a,0 <y < b are maintained at zero temperature. If at # = 0 the
temperature 7 has the prescribed value f(x,y), then find the temperature at a point ¢ > 0, within the
rectangle.
Find the solution of the wave equation u;; = c?u,, under the following conditions:
& 0<x<bh
u(0,1) = u(L,t) =0, u,(x,0) = 0,u(x,0) = { °

b<x<L.

e(x—L)
Find a Fourier integral formula for the solution of the problem:

(b-1)

u; =k, x >0, >0
uy(0,6)=0,1>0
u(x,0) = f(x), x> 0.

Find a Fourier integral formula for the solution of the problem:
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u; =k, x >0, >0
u(0,0) =Ty, t >0
u(x,0) =To(1 —e *), x> 0.

17. Find a Fourier integral formula for the solution of the problem:

u; =k, x ERE >0
u(x,0)=e M xeR.

18. Find a Fourier integral formula for the solution of the problem:

uy =kuty, x ER,t >0
u(x,0) = f(x), u(x,0) =0, x e R.
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