A brief review of

Several Variable Differential Calculus

1 A brief review

We recall the following elements of Several variable calculus which are essential for under-

standing the first order Partial differential equations.

Definition 1.0.1. Let © be a open set in R?, (a,b) € Q and let f be a real valued function
defined on ) except possibly at (a,b). Then the limit lim  f(z,y) = L if for any e > 0

(z,y)—(a,b)

there exists 6 > 0 such that

V(z—aP+@y—-b2<s = [f(z,y) - L| <e

Example 1.0.2. Finding limit through polar coordinates:
3
x

onsider the function f(z,y) 21

This function is defined in R?\{(0,0)}. Taking z = r cosf,y = rsinf, we get
|f(r,0)] = |rcos®8] <r —=0 as r — 0.

Example 1.0.3. Ezample of function which has different limits along different straight lines.
. . Ty

Consider th t = =",
onsider the function f(x,y) e

Then along the straight lines y = mx, we get f(z, mz) = 17"—. Hence limit does not exist.

1+

Example 1.0.4. Exzample of function which has different limits along different curves:

Consider the function f(z,y):

Fla,y) = tls (z,y) £ (0,0)

0 (z,y) = (0,0)
Then along the curves y = ma?, we get f(x, ma?) = };2; Hence limit does not exist.

Example 1.0.5. Exzample function where polar coordinates seem to give wrong conclusions
222y
ot +y?

Consider the function f(x,y) =

Taking the path, y = ma?

, we see that the limit does not exist at (0,0). Now taking = =
rcosf,y = rsinf, we get

21 cos? 6 sin 0
r2cost§ + sin? 6’

f(ra 0) =




For any r > 0, the denominator is > 0. For each fixed r and taking § — 0, we see it tends to
0. Since | cos?#sinf| < 1, we tend to think for a while that this limit goes to zero as r — 0.

But along the path 7sinf = r2cos? 0, (i.e., r = Csoi:fe), we get
2sin% @
r0)=———=
f(r,9) 2sin? 0

Therefore the limit does not exist.

Let f be a real valued function defined in a ball around (a,b). Then

Definition 1.0.6. f is said to be continuous at (a,b) if

lim f(xa y) = f(a’ b)

(z,y)=(a,b)

Example 1.0.7. The function

Ty 2 2
f(x’ y) — /I2+y2 X + y 7é 0

0 r=y=0

Let € > 0. Then |f(xz,y) — 0] = \a:|\/% < |z|. So if we choose 6 =€, then |f(x,y)| < e.
a2ty

Therefore, f is continuous at (0,0).

Partial Derivatives: The partial derivative of f with respect to x at (a,b) is defined as

0
8%(%b):}1326%(f(a+h,b)—f(a,b))-

similarly, the partial derivative with respect to y at (a,b) is defined as

0
85(@’1,) = 1?3})% (f(a,b+k) — fla,b)).

Example 1.0.8. Consider the function

flz,y) =

As noted earlier, this is not a continuous function, but

12(0,0) = Jim n === =0

Similarly, we can show that f,(0,0) exists.

Also for a continuous function, partial derivatives need not exist. For example f(z,y) =



|z| + |y|. This is a continuous function at (0,0). Indeed, for any € > 0, we can take § < €/2.

But partial derivatives do not exist at (0,0).

Theorem 1.0.9. Sufficient condition for continuity: Suppose one of the partial deriva-
tives exist at (a,b) and the other partial derivative is bounded in a neighborhood of (a,b).

Then f(z,y) is continuous at (a,b).

Proof. Let f, exists at (a,b). Then
f(aa b + k) - f(aa b) = kfy(a? b) + lea
where €; — 0 as k — 0. Since f, exists and bounded in a neighborhood of at (a,b),

fla+h,b+k)— f(a,b) =f(a+h,b+k)— fla,b+ k) + f(a,b+ k) — f(a,b)
=hfy(a+0h,b+k)+ kfy(a,b) + ek
<hM + k| fy(a,b)| + e1k

— 0 as h,k— 0.

Directional derivatives, Definition and examples
Let p = p1i + paj be any unit vector. Then the directional derivative of f(x,y) at (a,b) in
the direction of p is

b — b

s—0 S

Example 1.0.10. f(x,y) = 2> +xy at P(1,2) in the direction of unit vector p = %% + %j

fl+ 5,2+ 5) — f(1,2)

Dyf(1,2) = lim ——2 2
~ fim - <32+s(2\/§+1)> N
) S \/i N ﬂ

The existence of partial derivatives does not guarantee the existence of directional derivatives

in all directions. For example take

Y 224240
flay) =5 e

0 z=y=0

Let ? = (p1,p2) such that p% + p% = 1. Then the directional derivative along p is

Dyf(0,0) = lim f(hpy, hp) — f(0,0) iy P1P2
h—0 h h—0 h(p? + p3)




exist if and only if p; = 0 or ps = 0.

The existence of all directional derivatives does not guarantee the continuity of the function.

For example

Example 1.0.11.

2

. (a,y) £ (0,0)
0 r=y=0

f(m,y) -

Let ? (p1,p2) such that p? + p3 = 1. Then the directional derivative along p is

Dﬁf(o O) — lim f(spb SPQ) — f(0,0)

s—0 S
— Sgp%pz
s—0 s(stp] + s2p2)

plmz'fzaéo

In case of po = 0, we can compute the partial derivative w.r.ty to be 0. Therefore all the

directional derivatives exist. But this function is not continuous (y = max? and x — 0).
Differentiability: Let D be an open subset of R?. Then

Definition 1.0.12. A function f(z,y): D — R is differentiable at a point (a,b) of D if there
exists €1 = €(h, k), ea = ea(h, k) such that

fla+hb+ k) — f(a,b) = hfz(a,b) + kfy(a,b) + her + kea,

where €1,e2 — 0 as (h, k) — (0,0).

Example 1.0.13. Consider the function f(z,y) = 2*>+y*+zy. Then f,(0,0) = £,(0,0) = 0.
Also
f(h,k) — £(0,0) = h? + k* + hk = Oh + Ok + e1h + ek

where € = h + k,ea = k. Therefore f is differentiable at (0,0).
Example 1.0.14. Show that the following function f(x,y) is is not differentiable at (0,0)

xsin%—l—ysin%, xy #0
0 zy =10

flz,y) =

Using the boundedness of sin and cos, we get |f(z,y)| < |z| + |y| < 24/2? + y? implies that



f is continuous at (0,0). Also

f(hv 0) — f(0,0)

2(0,0) = Jim T2 o,
. 0,k) — f(0,0
$0.4) = i TOB 100

If f is differentiable, then there exists €1, o such that
f(h> k) - f(ov O) =erh + ek
where €1,60 — 0 as h, k — 0. Now taking h = k, we get
o1
f(hyh) = (&1 + e2)h = 2hs1nﬁ = h(e1 + €2).
So as h — 0, we get sin% — 0, a contradiction.

Equivalent condition for differentiability:

Af—
Theorem 1.0.15. f is differentiable at (a,b) <= lirr[l)M
=0 p

hb+ k) — f(a,b), df = hfs(a,b) + kfy(a,b) and p = VA2 T k2

22
x2+ij/2 (z,y) #0

0 xzy:O.

= 0, where Af = f(a+

Example 1.0.16. Consider f(z,y) =

Partial derivatives exist at (0,0) and f,(0,0) = f,(,0) = 0. By taking h = pcos @,k = psin0,
we get
Af—df K%k p3cos®fsinf 2. .
= —3 = ———5—— = cos" fsind.
p p p
The limit does not exist. Therefore f is NOT differentiable at (0,0).

Theorem 1.0.17. Sufficient Condition: Suppose fr(x,y) and f,(z,y) exist in an open
neighborhood containing (a,b) and both functions are continuous at (a,b). Then f is differ-
entiable at (a,b).

There are functions which are Differentiable but the partial derivatives need not be continuous.

For example,

Example 1.0.18. consider the function

3 qin L 3 i 1
x”sin 73 +y°sin 5 xy #0

0 zy = 0.

flz,y) =



Then
33:2simg%2 —2005% xy # 0

0 zy =0

fx(xa y) =

Also f,(0,0) = limp_,0 w = 0. So partial derivatives are not continuous at (0, 0).

1 1
_ 3 3
f(Az, Ay) = (Ax) smw + (Ay)’sin By
=040+ 1Az + e2Ay
where €; = (Az)?sin ﬁ and ez = (Ay)?sin @. It is easy to check that e;,e3 — 0. So f

is differentiable at (0,0).

There are continuous functions for which directional derivatives exist in any direction, but

the function is not differentiable.

Example 1.0.19. Consider the function

(Ezxercise problem)

Chain rule:

Partial derivatives of composite functions: Let z = F(u,v) and u = ¢(z,y),v = ¥(z,y).
Then z = F(é(z,y),9¥(x,y)) as a function of x,y. Suppose F, ¢, have continuous partial
derivatives, then we can find the partial derivatives of z w.r.t x, y as follows: Let = be increased
by Az, keeping y constant. Then the increment in u is Ayu = u(z + Az,y) — u(z,y) and
similarly for v. Then the increment in z is (as z is differentiable as a function of u, v )

OF oF

Apz:=z(x+ Az, y + Ay) — z(z,y) = %Axu + %Am’u + e Azu + e9Av

Now dividing by Az

Agz OjAzu +8£va n Agu n Agv
Azr  Ou Ax ov Ax ‘1 Az € Az




Taking Az — 0, we get

Or Oudx Ovodxr ‘Azm0 "Ox “Az—s0 Oz
_OF Ou  OF Ov
~udr ' Bvor

similarly, one can show
0z OFOu OF Ov

oy ouoy  voy

Example 1.0.20. Let z = In(u? + v2),u = "V v = 22 + y.

_ 2u _ 1 __x+y? _
Thenzu—u2+v,zv—u2+v,ux—e V' v, = 2.
o 2u e 2z
Fr = 9 2
u* +v u* +v

Theorem 1.0.21. If f(x,y) is differentiable, then the directional derivative in the direction
p at (a,b)is
Dﬁf(aa b) - Vf<a7 b) - p-

Proof. Let p = (p1,p2). Then from the definition,

o F@ spr b sp) = flah) L flals),y(s) — £(2(0),5(0)

s—0 S s—0 S

where x(s) = a + sp1,y(s) = b+ spa.
From the chain rule,
f(a(s),y(s)) — f(2(0),y(0)) _of , dz Of . dy

(a,b)% + ETy(a’b)% =V f(a,b)- (p1,p2).

lim = =
s—0 S ox

/1]

The above proposition is again only sufficient condition. That is The formula Dyf = Vf - p

can still hold even when function f is NOT differentiable. for example

A
fay) =4 vy @YW FEOD
0 (,) = (0,0)

In this case it is easy to check from the definition that all directional derivatives at the origin
are equal to zero. But the function is not differentiable at the origin. To show this take the

polar coordinates x = rcos 6,y = rsinf to see that

Af —df . sin? @ cos 04/] sin 0|

r r2cos2 0 4 sin®6




sin 6
cos 6

Taking r = and taking 6 — 0, we see that the above limit approaches infinity. ///
Suppose a smooth curve v is R? is defined as r(t) = z(t)i + y(t)j for t € [a,b]. Then the

rate of change on the surface z = f(z,y) along r(¢) can be seen by chain rule as

ofd ofd
_Ofdr  Ofdy _

/
Oz dt Oy dt = V).

&) = S F(0) (1)

2 Calculus of Vector valued functions

Definition 2.0.1. Suppose f : R™ — R™ be well defined functin in a meighbourhood of a
point A € R™. Then f is said to be differentiable at A if there exists a linear transformation

T :R"™ to R™ such that
(A R) — f(4) = Th]

0.
= 2]

If a function is f is differentiable at a point A, then it is not difficult to see that

9h O0A .. Oh
o0z Oxo O0zn
8f2  0fa .. Of2
T — 3:f:1 89'62 8a'cn
Ofm Ofr . Ofm
o0x1 0o Oy

We may also denote f'(A) = T. All the elements defined for realvalued functions can be
generalized to this case.
Mean Value theoem: Suppose f : R” — R™. Then we can apply the meanvalue

theorem of one variable to each f; to see
filz +h) — fi(x) =V fi(r+th)-h
But there will not be one ¢« for all ¢;, : = 1,2, 3,...m. For exaple
f:[0,27|R?; f(x) = (cosx,sinx)

then f(27) — f(0) = 0 but f](z) = —sinz, f}(x) = cosx are never simultaneously zero as x

varies over [0,27]. So the Mean Value theorem takes the following form:

Theorem 2.0.2. Mean Value Inequality: Suppose f is differentiable in an open convex
set D around the point x and || f'(y)|| < M for all y € D, for some M > 0. Then

1f(z+h) = f(z)] < M]|A|



Proof. Define g;(t) = fi(z +th),t € [0,1] . Then we have

1 1 .
et = i) =) - 00 = [ s = [ ar @

Now using Cauchy-Scwartz inequality one obtains the following for any vector valued function

o(t)
1 1
|| / o(t)dt] < / lo(e)dt
0 0
Indeed, taking u = fol v(t)dt

Jul? = (u,0) = < / 1v(t>dt7u> -/ o(t), ut < / ol < ful / (o)

From (2.1), we get
1
fx+h)— f(z) = (/ f’(a:—i—th)dt) “h

0

where f’ is the matrix T described above. Therefore,
1f(z+h) = f(z)]| < M|A].

Remark 2.1. It s worthy to note that the the equality many not hold here as in the one
variable case.

Inverse function theorem:

Theorem 2.0.3. If f : R™ — R" is C! in an open set around A € R™ and Det(f'(A)) # 0,
then there exists an open ball B,(A) such that

1. f has C inverse function f=' in B,.(A)

2. (7 (f(@) = (f'(2))~" for all x € By(A).

In simple terms, if u = fi(z,y),v = fa(x,y) such that fi,fo has continuous partial
derivates in a neigbourhood around (zg,y0) and let Det(f'(xo,y0)) # 0, then there exists
r > 0 such that in B, ((zo,yo)) there is G(u,v) = (g1(u,v), g2(u, v)) such that z = g1 (u,v),y =

g2(u,v). The function G is called the inverse of F'. Moreover

9z Oz duou
Oudv | — | Oz dy
9y Oy Qv Qv
ou Ov oz dy

Example 2.0.4. Consider the function f(z,y) = (u,v) = (z cosy, xsiny) then near (zo,yo), xo #

0, (x,y) can be expressed as differentiable function of (u,v).



In this case, u, = cosy,u, = —xsiny,v, = siny,vy, = xcosy. Clearly all of these are

continuous everywhere.

Oz Ox
Det(f'(z0,y0)) = Det ?)Z 35
Ou v

€OS 1o, — T Sin Yo
(z0,y0) — Det ( . > = X0 7é 0.
SN Yo, Lo COS Yo

Hence by the inverse function theorem f has C' inverse and (xz,y) can be expressed as

functions of (u,v). Moreover,

Oz Oz du du\ "1 . -1 i

gﬁ 27 _ | 9z 0y _[cOsyo —xpsInyo _ 1 fxocosyo wosinyp
|\ wo e = .

a% a% 9712 ETZ Simnyp  ToCOSYo To \ —sinyp COoS 1o

By comparing, we have

x ox )
% = COS Yo, % = S Yo
Just to remark that in the above % = cosyy # —

COS Yo

= - So there is no inverse partial
. . S
differentiation.

Example 2.0.5. Let u = 2% —y and v = x —y. Then to check if the inverse exists

20 —1
7] = Det [ " —1- 2
1 -1

So this function is invertible at all points other than x = % That is, if © # % we can express

(z,y) as a Ct function of (u,v).

Remark 2.2. The hypothesis of Inverse function theorem is only sufficient but not neccessary.

For example f(z) = z3. f/(0) = 0 and the function has C inverse in around x = 0.
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