
A brief review of

Several Variable Differential Calculus

1 A brief review

We recall the following elements of Several variable calculus which are essential for under-

standing the first order Partial differential equations.

Definition 1.0.1. Let Ω be a open set in R2, (a, b) ∈ Ω and let f be a real valued function

defined on Ω except possibly at (a, b). Then the limit lim
(x,y)→(a,b)

f(x, y) = L if for any ε > 0

there exists δ > 0 such that√
(x− a)2 + (y − b)2 < δ =⇒ |f(x, y)− L| < ε.

Example 1.0.2. Finding limit through polar coordinates:

Consider the function f(x, y) =
x3

x2 + y2
.

This function is defined in R2\{(0, 0)}. Taking x = r cos θ, y = r sin θ, we get

|f(r, θ)| = |r cos3 θ| ≤ r → 0 as r → 0.

Example 1.0.3. Example of function which has different limits along different straight lines.

Consider the function f(x, y) =
xy

x2 + y2
.

Then along the straight lines y = mx, we get f(x,mx) = m
1+m2 . Hence limit does not exist.

Example 1.0.4. Example of function which has different limits along different curves:

Consider the function f(x, y):

f(x, y) =


x4−y2
x4+y2

(x, y) 6≡ (0, 0)

0 (x, y) ≡ (0, 0)

Then along the curves y = mx2, we get f(x,mx2) = 1−m2

1+m2 . Hence limit does not exist.

Example 1.0.5. Example function where polar coordinates seem to give wrong conclusions

Consider the function f(x, y) =
2x2y

x4 + y2
.

Taking the path, y = mx2, we see that the limit does not exist at (0, 0). Now taking x =

r cos θ, y = r sin θ, we get

f(r, θ) =
2r cos2 θ sin θ

r2 cos4 θ + sin2 θ
.
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For any r > 0, the denominator is > 0. For each fixed r and taking θ → 0, we see it tends to

0. Since | cos2 θ sin θ| ≤ 1, we tend to think for a while that this limit goes to zero as r → 0.

But along the path r sin θ = r2 cos2 θ, (i.e., r = sin θ
cos2 θ

), we get

f(r, θ) =
2 sin2 θ

2 sin2 θ
= 1.

Therefore the limit does not exist.

Let f be a real valued function defined in a ball around (a, b). Then

Definition 1.0.6. f is said to be continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

Example 1.0.7. The function

f(x, y) =


xy√
x2+y2

x2 + y2 6= 0

0 x = y = 0

Let ε > 0. Then |f(x, y) − 0| = |x| |y|√
x2+y2

≤ |x|. So if we choose δ = ε, then |f(x, y)| ≤ ε.

Therefore, f is continuous at (0, 0).

Partial Derivatives: The partial derivative of f with respect to x at (a, b) is defined as

∂f

∂x
(a, b) = lim

h→0

1

h
(f(a+ h, b)− f(a, b)) .

similarly, the partial derivative with respect to y at (a, b) is defined as

∂f

∂y
(a, b) = lim

k→0

1

k
(f(a, b+ k)− f(a, b)) .

Example 1.0.8. Consider the function

f(x, y) =


xy

x2+y2
(x, y) 6≡ (0, 0)

0 (x, y) ≡ (0, 0)

As noted earlier, this is not a continuous function, but

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

Similarly, we can show that fy(0, 0) exists.

Also for a continuous function, partial derivatives need not exist. For example f(x, y) =
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|x|+ |y|. This is a continuous function at (0, 0). Indeed, for any ε > 0, we can take δ < ε/2.

But partial derivatives do not exist at (0, 0).

Theorem 1.0.9. Sufficient condition for continuity: Suppose one of the partial deriva-

tives exist at (a, b) and the other partial derivative is bounded in a neighborhood of (a, b).

Then f(x, y) is continuous at (a, b).

Proof. Let fy exists at (a, b). Then

f(a, b+ k)− f(a, b) = kfy(a, b) + ε1k,

where ε1 → 0 as k → 0. Since fx exists and bounded in a neighborhood of at (a, b),

f(a+ h, b+ k)− f(a, b) =f(a+ h, b+ k)− f(a, b+ k) + f(a, b+ k)− f(a, b)

=hfx(a+ θh, b+ k) + kfy(a, b) + ε1k

≤hM + k|fy(a, b)|+ ε1k

→ 0 as h, k → 0.

Directional derivatives, Definition and examples

Let p̂ = p1î+ p2ĵ be any unit vector. Then the directional derivative of f(x, y) at (a, b) in

the direction of p̂ is

Dp̂f(a, b) = lim
s→0

f(a+ sp1, b+ sp2)− f(a, b)

s
.

Example 1.0.10. f(x, y) = x2 + xy at P (1, 2) in the direction of unit vector p = 1√
2
î+ 1√

2
ĵ.

Dp̂f(1, 2) = lim
s→0

f(1 + s√
2
, 2 + s√

2
)− f(1, 2)

s

= lim
s→0

1

s

(
s2 + s(2

√
2 +

1√
2

)

)
= 2
√

2 +
1√
2

The existence of partial derivatives does not guarantee the existence of directional derivatives

in all directions. For example take

f(x, y) =


xy

x2+y2
x2 + y2 6= 0

0 x = y = 0
.

Let −→p = (p1, p2) such that p2
1 + p2

2 = 1. Then the directional derivative along p is

Dp̂f(0, 0) = lim
h→0

f(hp1, hp2)− f(0, 0)

h
= lim

h→0

p1p2

h(p2
1 + p2

2)
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exist if and only if p1 = 0 or p2 = 0.

The existence of all directional derivatives does not guarantee the continuity of the function.

For example

Example 1.0.11.

f(x, y) =


x2y
x4+y2

(x, y) 6≡ (0, 0)

0 x = y = 0
.

Let −→p = (p1, p2) such that p2
1 + p2

2 = 1. Then the directional derivative along p is

Dp̂f(0, 0) = lim
s→0

f(sp1, sp2)− f(0, 0)

s

= lim
s→0

s3p2
1p2

s(s4p4
1 + s2p2

2)

=
p2

1p2

p2
2

if p2 6= 0

In case of p2 = 0, we can compute the partial derivative w.r.t y to be 0. Therefore all the

directional derivatives exist. But this function is not continuous (y = mx2 and x→ 0).

Differentiability: Let D be an open subset of R2. Then

Definition 1.0.12. A function f(x, y) : D → R is differentiable at a point (a, b) of D if there

exists ε1 = ε(h, k), ε2 = ε2(h, k) such that

f(a+ hb+ k)− f(a, b) = hfx(a, b) + kfy(a, b) + hε1 + kε2,

where ε1, ε2 → 0 as (h, k)→ (0, 0).

Example 1.0.13. Consider the function f(x, y) = x2 +y2 +xy. Then fx(0, 0) = fy(0, 0) = 0.

Also

f(h, k)− f(0, 0) = h2 + k2 + hk = 0h+ 0k + ε1h+ ε2k

where ε1 = h+ k, ε2 = k. Therefore f is differentiable at (0, 0).

Example 1.0.14. Show that the following function f(x, y) is is not differentiable at (0, 0)

f(x, y) =

x sin 1
x + y sin 1

y , xy 6= 0

0 xy = 0

Using the boundedness of sin and cos, we get |f(x, y)| ≤ |x| + |y| ≤ 2
√
x2 + y2 implies that
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f is continuous at (0, 0). Also

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= 0.

fy(0, k) = lim
k→0

f(0, k)− f(0, 0)

k
= 0.

If f is differentiable, then there exists ε1, ε2 such that

f(h, k)− f(0, 0) = ε1h+ ε2k

where ε1, ε2 → 0 as h, k → 0. Now taking h = k, we get

f(h, h) = (ε1 + ε2)h =⇒ 2h sin
1

h
= h(ε1 + ε2).

So as h→ 0, we get sin 1
h → 0, a contradiction.

Equivalent condition for differentiability:

Theorem 1.0.15. f is differentiable at (a, b) ⇐⇒ lim
ρ→0

∆f − df
ρ

= 0, where ∆f = f(a +

h, b+ k)− f(a, b), df = hfx(a, b) + kfy(a, b) and ρ =
√
h2 + k2

Example 1.0.16. Consider f(x, y) =


x2y
x2+y2

(x, y) 6≡ 0

0 x = y = 0
.

Partial derivatives exist at (0, 0) and fx(0, 0) = fy(, 0) = 0. By taking h = ρ cos θ, k = ρ sin θ,

we get
∆f − df

ρ
=
h2k

ρ3
=
ρ3 cos2 θ sin θ

ρ3
= cos2 θ sin θ.

The limit does not exist. Therefore f is NOT differentiable at (0, 0).

Theorem 1.0.17. Sufficient Condition: Suppose fx(x, y) and fy(x, y) exist in an open

neighborhood containing (a, b) and both functions are continuous at (a, b). Then f is differ-

entiable at (a, b).

There are functions which are Differentiable but the partial derivatives need not be continuous.

For example,

Example 1.0.18. consider the function

f(x, y) =

x3 sin 1
x2

+ y3 sin 1
y2

xy 6= 0

0 xy = 0.
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Then

fx(x, y) =

3x2 sin 1
x2
− 2 cos 1

x2
xy 6= 0

0 xy = 0

Also fx(0, 0) = limh→0
f(h,0)−f(0,0)

h = 0. So partial derivatives are not continuous at (0, 0).

f(∆x,∆y) = (∆x)3 sin
1

(∆x)2
+ (∆y)3 sin

1

(∆y)2

= 0 + 0 + ε1∆x+ ε2∆y

where ε1 = (∆x)2 sin 1
(∆x)2

and ε2 = (∆y)2 sin 1
(∆y)2

. It is easy to check that ε1, ε2 → 0. So f

is differentiable at (0, 0).

There are continuous functions for which directional derivatives exist in any direction, but

the function is not differentiable.

Example 1.0.19. Consider the function

f(x, y) =


y
|y|
√
x2 + y2 y 6= 0

0 y = 0

(Exercise problem)

Chain rule:

Partial derivatives of composite functions: Let z = F (u, v) and u = φ(x, y), v = ψ(x, y).

Then z = F (φ(x, y), ψ(x, y)) as a function of x, y. Suppose F, φ, ψ have continuous partial

derivatives, then we can find the partial derivatives of z w.r.t x, y as follows: Let x be increased

by ∆x, keeping y constant. Then the increment in u is ∆xu = u(x + ∆x, y) − u(x, y) and

similarly for v. Then the increment in z is (as z is differentiable as a function of u, v )

∆xz := z(x+ ∆x, y + ∆y)− z(x, y) =
∂F

∂u
∆xu+

∂F

∂v
∆xv + ε1∆xu+ ε2∆xv

Now dividing by ∆x

∆xz

∆x
=
∂F

∂u

∆xu

∆x
+
∂F

∂v

∆xv

∆x
+ ε1

∆xu

∆x
+ ε2

∆xv

∆x
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Taking ∆x→ 0, we get

∂z

∂x
=
∂F

∂u

∂u

∂x
+
∂F

∂v

∂v

∂x
+ ( lim

∆x→0
ε1)

∂u

∂x
+ ( lim

∆x→0
ε2)

∂v

∂x

=
∂F

∂u

∂u

∂x
+
∂F

∂v

∂v

∂x

similarly, one can show
∂z

∂y
=
∂F

∂u

∂u

∂y
+
∂F

∂v

∂v

∂y
.

Example 1.0.20. Let z = ln(u2 + v2), u = ex+y2 , v = x2 + y.

Then zu = 2u
u2+v

, zv = 1
u2+v

, ux = ex+y2 , vx = 2x.

zx =
2u

u2 + v
ex+y2 +

2x

u2 + v

Theorem 1.0.21. If f(x, y) is differentiable, then the directional derivative in the direction

p̂ at (a, b)is

Dp̂f(a, b) = ∇f(a, b) · p̂.

Proof. Let p̂ = (p1, p2). Then from the definition,

lim
s→0

f(a+ sp1, b+ sp2)− f(a, b)

s
= lim

s→0

f(x(s), y(s))− f(x(0), y(0))

s

where x(s) = a+ sp1, y(s) = b+ sp2.

From the chain rule,

lim
s→0

f(x(s), y(s))− f(x(0), y(0))

s
=
∂f

∂x
(a, b)

dx

ds
+
∂f

∂y
(a, b)

dy

ds
= ∇f(a, b) · (p1, p2).

///

The above proposition is again only sufficient condition. That is The formula Dp̂f = ∇f · p̂
can still hold even when function f is NOT differentiable. for example

f(x, y) =


x2y
√
|y|

x4 + y2
(x, y) 6≡ (0, 0)

0 (x, y) ≡ (0, 0)

In this case it is easy to check from the definition that all directional derivatives at the origin

are equal to zero. But the function is not differentiable at the origin. To show this take the

polar coordinates x = r cos θ, y = r sin θ to see that

∆f − df
r

=
√
r

sin2 θ cos θ
√
| sin θ|

r2 cos2 θ + sin2 θ
.
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Taking r = sin θ
cos θ and taking θ → 0, we see that the above limit approaches infinity. ///

Suppose a smooth curve γ is R2 is defined as r(t) = x(t)̂i+ y(t)ĵ for t ∈ [a, b]. Then the

rate of change on the surface z = f(x, y) along r(t) can be seen by chain rule as

d

dt
f(r(t)) =

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= ∇f · r′(t).

2 Calculus of Vector valued functions

Definition 2.0.1. Suppose f : Rn → Rm be well defined functin in a neighbourhood of a

point A ∈ Rn. Then f is said to be differentiable at A if there exists a linear transformation

T : Rn to Rm such that

lim
‖h‖→0

‖f(A+ h)− f(A)− Th‖
‖h‖

= 0.

If a function is f is differentiable at a point A, then it is not difficult to see that

T =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂f1
∂x2

· · · ∂fm
∂xn


We may also denote f ′(A) = T . All the elements defined for realvalued functions can be

generalized to this case.

Mean Value theoem: Suppose f : Rn → Rm. Then we can apply the meanvalue

theorem of one variable to each fi to see

fi(x+ h)− fi(x) = ∇fi(x+ tih) · h

But there will not be one t∗ for all ti, i = 1, 2, 3, ...m. For exaple

f : [0, 2π]R2; f(x) = (cosx, sinx)

then f(2π) − f(0) = 0 but f ′1(x) = − sinx, f ′2(x) = cosx are never simultaneously zero as x

varies over [0, 2π]. So the Mean Value theorem takes the following form:

Theorem 2.0.2. Mean Value Inequality: Suppose f is differentiable in an open convex

set D around the point x and ‖f ′(y)‖ ≤M for all y ∈ D, for some M > 0. Then

‖f(x+ h)− f(x)‖ ≤M‖h‖
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Proof. Define gi(t) = fi(x+ th), t ∈ [0, 1] . Then we have

fi(x+ h)− fi(x) = gi(1)− gi(0) =

∫ 1

0
g′i(s)ds =

∫ 1

0

 n∑
j=1

∂fi
∂xj

(x+ th)hj

 dt (2.1)

Now using Cauchy-Scwartz inequality one obtains the following for any vector valued function

v(t)

‖
∫ 1

0
v(t)dt‖ ≤

∫ 1

0
‖v(t)‖dt

Indeed, taking u =
∫ 1

0 v(t)dt

‖u‖2 = 〈u, u〉 =

〈∫ 1

0
v(t)dt, u

〉
=

∫ 1

0
〈v(t), u〉dt ≤

∫ 1

0
‖v(t)‖‖u‖ ≤ ‖u‖

∫ t

0
‖v(t)‖dt

From (2.1), we get

f(x+ h)− f(x) =

(∫ 1

0
f ′(x+ th)dt

)
· h

where f ′ is the matrix T described above. Therefore,

‖f(x+ h)− f(x)‖ ≤M‖h‖.

Remark 2.1. It is worthy to note that the the equality many not hold here as in the one

variable case.

Inverse function theorem:

Theorem 2.0.3. If f : Rn → Rn is C1 in an open set around A ∈ Rn and Det(f ′(A)) 6= 0,

then there exists an open ball Br(A) such that

1. f has C1 inverse function f−1 in Br(A)

2. (f−1)′(f(x)) = (f ′(x))−1 for all x ∈ Br(A).

In simple terms, if u = f1(x, y), v = f2(x, y) such that f1, f2 has continuous partial

derivates in a neigbourhood around (x0, y0) and let Det(f ′(x0, y0)) 6= 0, then there exists

r > 0 such that in Br((x0, y0)) there is G(u, v) = (g1(u, v), g2(u, v)) such that x = g1(u, v), y =

g2(u, v). The function G is called the inverse of F . Moreover(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)−1

Example 2.0.4. Consider the function f(x, y) = (u, v) = (x cos y, x sin y) then near (x0, y0), x0 6=
0, (x, y) can be expressed as differentiable function of (u, v).
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In this case, ux = cos y, uy = −x sin y, vx = sin y, vy = x cos y. Clearly all of these are

continuous everywhere.

Det(f ′(x0, y0)) = Det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
(x0,y0) = Det

(
cos y0,−x0 sin y0

sin y0, x0 cos y0

)
= x0 6= 0.

Hence by the inverse function theorem f has C1 inverse and (x, y) can be expressed as

functions of (u, v). Moreover,

(f−1)′(f(x)) = (f ′(x))−1 =⇒(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)−1

=

(
cos y0 −x0 sin y0

sin y0 x0 cos y0

)−1

=
1

x0

(
x0 cos y0 x0 sin y0

− sin y0 cos y0

)
By comparing, we have

∂x

∂u
= cos y0,

∂x

∂v
= sin y0

Just to remark that in the above ∂x
∂u = cos y0 6= 1

cos y0
= 1

∂u
∂x

. So there is no inverse partial

differentiation.

Example 2.0.5. Let u = x2 − y and v = x− y. Then to check if the inverse exists

|J | = Det

(
2x −1

1 −1

)
= 1− 2x

So this function is invertible at all points other than x = 1
2 . That is, if x 6= 1

2 we can express

(x, y) as a C1 function of (u, v).

Remark 2.2. The hypothesis of Inverse function theorem is only sufficient but not neccessary.

For example f(x) = x3. f ′(0) = 0 and the function has C1 inverse in around x = 0.
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