Chapter 4
Parabolic Equations

4.1 Physical models

Let u(x,t) be the heat of material at the point x and at time ¢ in a uniform cross section object. Let g(x,t)
be the heat flux and f(x,#) is the internal generated sources. Then from the equation of continuity we get

'/.x2 [u(x,52) —u(x,n)]dx = /):2 ./:2 F(x,t)dtdx+ '/tltz [q(x1,t) — q(x2,1)] dt

1

This is equivalently,

X2 2 Ju Xy [t X aq
-/xl ~/t| E()ﬁt)dxdt— ./xl '/t1 f()ﬁl‘)dxdl‘—./x[ '/tl x(x’t)dxdt

Therefore,
du dq
R )C,l _ =
ot fix1) dox
Now using the Fourier Law, we assume that g = —k%, where k is viscosity constant that depends on the

material. In case of k = 1, we get the equation

u 0%u
27

E:f(xJ)JrW xeR,t>0.

In higher dimensions, x € R", we get

0
a—’: = f(x,t) +Au, xe R", t > 0.

4.2 Fundamental solution

We consider the problem
u, = Au, t > 0,R". 2.1

We note that if u(x,t) solves this equation, then u(A%¢, A0x) also solves for A € R. This scaling indicates

.2 . . .
the ratio “-, (r = |x|) is important for heat equation. So we can search for solution u(x,?) of the form
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2
u(x,t):v(rT>7r:|x|7t>07x€R”

So we assume that

1
u(x,t) = t—av(t%> ,x€R" >0,

where o,  will be found. Taking y = 7, we get

a B
W =- (taﬂv(y)—&- taHVv-y)

1

Au= tOH-Zﬁ

Av

Substituting this in the equation (2.1) and taking § = %, we get
1 1
u,—Au:m (xv(y)—i—EVv-y—i—Av =0 (2.2)

We simplify this further by taking v(y) = w(|y|) for some w : R — R. Then

v 1o\ Vi / Vi /
—=w(r)==w(r)— = Vv.y=w(r)r
dyi Iyl Iyl

-1
Av:w/’—l—n—w/

r

Therefore from (2.1), we get
r -, y n—1,
ow+-—rw' +w' +——w =0
2 r

Now setting o = 7 we can write the above equation in the exact form as
—1,.7\/ 1 /
("W + 3 (r'w) =0

Upon integration, we get 7'~ 'w/(r) + 1w = a. Assuming lim w(r),w'(r) = 0, we get w(r) = be 4, where
r—yoo
b is a constant of integration. Therefore we have the

u(x,t) = —e

Definition 4.2.1 Fundamental solution: The function

o P
_e 4, xeR.t>0
P(x,1) =4 (4m)3 !
0 xeR" <0
is called fundamental solution. The choice of b = W is due to the following

Lemma 4.2.1 The fundamental solution ®(x,t) satisfies

I [pn @(x,t)dx =1,
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0, x#0
2. lim ®(x,1) = *7

t—0t o, x=0

3. & —AD=0,xeR", t>0.

Proof. 1. Taking the transformation z = ﬁ we get

1
D(x,t)dx = — e az=1.
R" w2 JR"

2. follows directly from the definition.
3. Direct calculation from the definition. O

Lemma 4.2.2 ®(x,t) — 6 in Z'(R"). i.e.,
lim | @(x,7)y(x)dx = y(0), forall y € 2(R"). (2.3)

t—0t JRn

Proof. Let y € Z(R"). We notice that
V) = [ @nydr+ [ @) - x)dx
For any € > 0 there exists 0 > 0 such that
K[ <6 = [wlx)—y(0)] <e

From (1) of above Lemma, we get

P (x,1)(y(0) — y(x))dx

< [, @0 W) - y(]ds

—[ [ @y - ywlds
B5(0)  JRMBs(0)

::Ig +Jg

RV!

c e 2
| < 2||l[/||°°/ ®(x, 1)dx < —/ e T ldr—0ast — 0", O
R™\Bj(0) /2 Js
Theorem 4.2.1 @ is a fundamental solution of (3; — A) in R"*1. i.e.,
(0 — A)D(x,t) = 8(x,1) in Z'(R"T),

where 8(x,t) is the Dirac delta distribution at (0,0).

Proof. Let ¢ € 2(R"1). Then define the cut off functions

P(x,t), t>¢€

0, t<e

De(x,1) =

Then &, — @ in Z'(R"1). So it enough to show (9, — A,)Pe — & in Z'(R*"!). Indeed, for ¢ € Z(R"+1),

using integration by parts and the compact support of ¢,
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[ pe- / /Rn+l d, — A)odxdt
— [ [~ —A) D)o+ / ®(x, )0 (x, ¢)dx
. Rn+1 JRn
= | P(x,&)p(x,€)dx
RV!

But then
— Rnrp(x,e)(gb(x,S)—¢(0=0))dx

- /35(0) +/n\35(0) ¢(.x78)(¢(_x78) - ¢(070))dx
=I1+J

‘¢(o70)—/w D (x,8)9 (x, €)dx

For any 7 > 0 there exists § > 0 such that vx2 + €2 < § implies |9 (x,€) — ¢(0,0)| < n. Therefore, || < 7.
To estimate J we note that

c [~ 2
|/ §2||¢||°<,/ qb(x,e)dxgm/ e e ldr—0ase 0",
R™M\B;(0) MeJs

Now & and € can be chosen to be small so that  +J is as small as possible. Hence the theorem. O

4.3 Cauchy Problem

Consider the problem: Given g(x), find u(x,t) satisfying

(CP) w—Au=0,xeR" >0
u(x,0) =g(x), xe R"

We have the following theorem

Theorem 4.3.1 Suppose g € C(R")NL*(R"). Then

u(x,1) = (Pxg)( / D (x—y,1)g(y)dy
is a solution of the Cauchy Problem (CP)

Proof. tis easy to see that @ is differentiable for any (x,7) € (R" X [§,e0)) and all derivatives are bounded

and integrable. Therefore we can take the derivatives inside the integral sign to get

—du= [ (@ AP)x—y0g0)dy =0.

It remians to show that 1+im u(x,t) = g(xp). Using the properties of @, and the continuity of g, € > 0,
t—0T, x—xq

there exists 4 > 0 such that
x—xo| <8 = |g(x)—g(x0)| < €.

Then it is easy to see the following
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eta0) ~ 5] < | [ W0 t0)— o))
< [ @r=30)glo0) ~ g0 dx

:/ +/ D(x—y,1)|g(x0) —g(v)|dx
B (x0) "\B3(xo)
= Ig +J£
gs/ P(x—y,t)dy+Je =€+ J;
RV!

To estimate Je, note that in this integral |y —xp| > 0 and as x — xo, we may assume that |x —xp| < 8/2.
Hence we get

1) 1
y—x0| < |y —x|+[x =2 < |y —x] +5 <=+ 5y —xl

Therefore, we get [y — x| > 1|y —xo|. Using this we estimate J as

[Je| < 2||g||°o/ D(x—y,1)dx < £/ e Tr" ldr—0asr— 0",
R"\B; (x) /2 Js

Hence, if |x —xp| < g and ¢ > 0 small, we get |u(x,t) — g(xo)| <2¢. O

The following stability estimate follows from the properties of @

Corollary 4.3.1 If g is continuous and bounded, then
lu(.st)||oo < |I&l]oos for all t > 0.
Next we consider the following nonhomogeneous problem:

u—Au = f(x,1), x e R", 1 >0,

(CEN) { u(x,0) =0, xe R™.

Duhamel’s Principle: This is a general principle of getting solutions of nonhomogeneous equation using
the solutions of homogeneous problems. To understand the principle, let us recall the ODE case. The

nonhomogeneous I[VP:
Y +ay=b(1), y(t9) =0

has solution y
y(t) = / b(s)e ) ds (3.4)
0

In otherwords,

V) = /0 x(t —5)b(s)ds

where x(t) satisfies the homogeneous problem x’ + ax = 0. Moreover x(s,t) = b(s)e ‘%) satisfies the
IVP:
X' +ax=0, x(s) = b(s) (3.5)

So the formula in (3.4) may be written
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Now going back to the heat equation (CPN), we write the homogeneous problem similar to (3.5) as:
U(x,t,s) satisfies

(3.6)

U(x,t,8) — AU (x,t,5) =0, >s, x €R",
U(x,t,s) = f(x,s) on {t = s}

Then U (x,t,s) may be written as
Ul(x,t,s) = / D(x—y,t —5)f(y,5)dy.
Rn

Theorem 4.3.2 If f € C>(R" x RY), f(x,t) and all its second order partial derivatives are continuous and
bounded. Then the function u(x,t) defined as

u(x,t) = /OtU(x,t,s)ds

solves the problem (CPN).
Proof. From the definition of U, we have
ot P
uer) = [ [ @G—yt=9f(ns)dyds
0 n
taking the transformation x —y — y and t — s — s we get
t
uer) = [ [ @(ns)f (=3t =s)dyds
0 JRe
Then using Newton-Liebnitz formula,
m——/ 0 0)f(x—y,0 dy+/)/ D(y,s)5-f(x—y,t —s)dyds
Au= / / DP(y,5)Axf(x —y,t —s)dyds
0 JRe
Therefore,

~tu= [ [ 4 [ @)@ a0 syt = s)dyds+ [ @(rs)f(x—3.00dy
=Je+Il+K (3.7)

Since f € C2(R"), we have the estimate

A ng/ P(y,s)dy —0,ase —0
R”

le= [ [ @0:5)(0— A0 —y.1 —s)ayds
// (y,8)0sf (x — y,t—sdyds—// D(y,s)A, f(x—y,t —s)dyds

Integration by parts on the first term, yields
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! t a
- / / D(y,5)0 f(x—y,t —s)dyds = / / —D(y,s)f(x—y,t —s)dyds
Je JR" Je Jrn ds

SR COVEETE, &
_//Rn fx—y,t —s)dyds

—/ <P(y,t)f(x—y,0)dy+/ D(y,e)f(x—y,t —€)dy
R? R

Again integration by parts on second term and using the fact that f has compact support we get

,/g /Rnqb(yaS)Ayf(xfy,l*S)dyds:f/g AD(y,s)f (x—y,t —s)dyds

Putting these things back in I we get

Le =K+/Rn¢(y,8)f(x—y,t—8)dy+/g /Rn(dﬁz—Ay@)f(x—y,t—S)dyds

The last term is equal to zero as t = 0 is not in the domain of integration and @ satisfies the heat equation
for all # > 0. So from (3.7), we get

—Au= lim [ ®(ye)f(x—yt—¢€)dy

e—0t JRn

As in the previous theorems, noting that for any 11 > 0, there exists a 6 > 0 such that

Y[ +e<d = [flx—yi—€)—flx0)]<n

L @00t —e)dy— )| < [ @lre) 7x—yt —) = flxur)ldy

_ /B / i DO G —e) = fx 0l dy

< n/ cD(y,~*3)dy+2||f|o<»/ D(y,e)dy
R R"\Bj(0)

C [~ 2
Sn—km/g e e/ ldr—0asn,e— 0"

Hence the proof of the theorem. O

4.4 Maximum Principles

The heat equation also satisfies the maximum principles. Let £ be a bounded domain in R" and let
T > 0. Define Q7 = Q x (0,7T). We define the parabolic boundary

I={(xt)€Qr: xcdQort=0}

Theorem 4.4.1 Let u € C2(Qr)NC(Qr) and all its second order partial derivatives are continuous. Sup-

pose u satisfy
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u < Au inQy.

Then u achieves its maximum on the parabolic boundary of Qr. i.e.,

max u(x,7) = maxu(x,t)
Qr r

Proof. As in the elliptic case, we proceed in two steps.
1. case 1: u; < Auin Q7.
For 0 < 7 < T, consider

Q=0 x(0,7), I ={(x,t) €Q;, x€IQ ort =0}

If the maximum of u is on Q; occurs at x € Q and t = 7, then u,(x,7) > 0 and Au(x,7) <0, violating
our assumption. Similarly, # cannot attain an interior maximum on £2.. Hence the result holds on Q;:

maxu(x,t) = maxu(x,r) < maxu(x,?)
o Iz r

Now by continuity of u, maxu = lim maxu. This proves the theorem in case 1.

Qr =T U,
2. case 2: u; < Auin Q7.

Let v = u — kt for some k > 0. Notice that v < u on Q7 and Av — v, = Au—u,; +k > 0 in Q. Thus by
case 1,

maxu = max(v+kt) = maxv+ k7T = maxv+ kT < maxu+kT
or Qor or r r

letting k — O establishes the theorem. O

As a corollary we have the following uniqueness result

Corollary 4.4.1 The initial boundary value problem

uy—Au= f(x,t) in Qr
u(dQ,1) = g(x,1), u(x,0) =h(x), x € Q

has at most one solution.

Proof. Suppose u; and u, are two solutions. Then u = u; — u, satisfies the problem

Uy —Au=01in Qr
u(dR2,t) =0,u(x,0) =0, x€ Q

Since the maximum of u on the parabolic boundary is 0, by above theorem, u =0. 0O

Next we prove the following Maximum principle for Cauchy problem

Theorem 4.4.2 Suppose u(x,t) and all its second order Partial derivatives are continuous in R" x (0,T),

u(x,t) is continous in R" x (0,T] and
u(x,t) §Ae"‘x‘2, xeR", 0<t<T

for some A,a > 0. If u is a solution of the Cauchy problem
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u, = Au, x eR"t >0
u(x,0) =g(x), xeR"

Then
sup u(x,t) =supg(x).
R [0,T] R"
Proof. Let us first assume that 4aT < 1. Then there exists € > 0 such that 4a(T +¢€) < l.Fixye R", u >0

and define

u [v—y|?

v(x,t) = u(x,t) — m€4(r+s_r) X € Rn,t > 0.

Then v, — Av =0 in R" x (0,T]. For r > 0, consider Q7 = B,(y) x (0,T]. Then by previous maximum

principle,
max v(x,7) = maxv(x,?). (4.8)
-QT It
Now note that ,
[x—y|
v(x,0) = u(x,0) - (”“Wew < u(x,0) = g(x).
Alsoify € dB,(x),0<t <T,
(x,) = u(x,1) K 4(‘;1'1)
v(x, 1) = u(x, (T+e—t)"/2e
2
< APl K iT+e)
C T Trepn
2
< Al H o)
= (T +¢e)n/?

Now 4a(T + €) < 1 implies ﬁ = a+ 7y for some y > 0. Therefore,

v(x,t) SAe“(b’Hf)z —,LL(4(a—|—’)/))”/ze(“+Y)r2
Taking y = 0 and if r is taken large enough, we get

v(x1) <A™ — p(d(a+7)" e 7 < supg(x)
RV!
Therefore, by (4.8)
v(y,t) <v(x,r) <supg, forally e R",0<r <T.

Now taking supremum over |x| = r we get

sup v(x,7) <supg(x)
B, x[0,T] R"

Now taking r — oo and t — 0 we get the result. In case 4aT > 1. Then apply this result for [0, 73], [T1, T3]
withTy = -, O

Corollary 4.4.2 Uniqueness: The Cauchy problem



80 4 Parabolic Equations

u=Au+ f(x,1), xeR" 1 >0
u(x,0) =g(x), xe R"

. . 2
has at most one solution which has the growth u(x,t) < A",

Proof. If u; and uy are two solutions. Then consider the function u = u; — uy. The Linearity of d; — A
suggests that u satisfies

u=Au, x eR"t >0
u(x,0) =0, x e R"

Then by the maximum principle, u=0. O
Now recall that in case of harmonic functions all the distributional solutions of Au = 0 are C~ (Weyl
theorem). In case of parabloic, we have the following Regularity result:

Theorem 4.4.3 If u(x,t) satisfies u, = Au in the sense of distributions in U. Then u € C*(U).

Proof. Let & = (x0,f) € U and € > 0. Consider ¢ € P(Base) C U such that ¢ =1 in B3¢(&). Consider
w= ¢uand v = d,w— Aw, then v is a distribution in U with support in B4¢ and v =0 in Bz¢. Then we know
from theory of Distributions that

w=®x*vin 7.

Now we claim that w is smooth around &. Choose y € C*(R"™!) with ¥ = 0 in B¢(0) and w = 1 in
R"*1\ By (0). Then y vanishes in a neighbouhood of the singularity of ®(y,s). So y® is a smooth func-
tion.

Now for (x,t) € B¢(&) and (y,s) € supp(v) C Bae(E) N (R*1\B3e(€)), we have

|(x,1) = (v,9)| > 26 = y(x—yt—s)=1

Therefore,
(y@)xv=Pxv=w, (x,1) € B(&)

which implies that w is smooth on B¢(£). But w = ¢u and ¢ = 1 in B,. Therefore u is smooth.

4.5 Problems

1. Show that [gm g, (o) P(x,t)dx — O ast — 0%,
2. @ — @ in Z'(RM)
3. Suppose U = Q2 x (0,T) and u € C3(U)NC(U) satisfies u; < Au+ cu in U, where ¢ < 0 is a constant.
If u > 0, show that
max u(x,7) = max u(x,t)
(x,t)eU (xp)elr

where I' = {(x,t) €U : x € 9Q ort = 0}.



