Chapter 4

Parabolic Equations

4.1 Physical models

Let u(x,t) be the heat of material at the point x and at time t in a uniform cross section object. Let q(x,t) be the heat flux and f(x,t) is the internal generated sources. Then from the equation of continuity we get

$$\int_{x_1}^{x_2} \left[u(x, t_2) - u(x, t_1) \right] dx = \int_{x_1}^{x_2} \int_{t_1}^{t_2} f(x, t) dt dx + \int_{t_1}^{t_2} \left[q(x_1, t) - q(x_2, t) \right] dt$$

This is equivalently,

$$\int_{x_1}^{x_2} \int_{t_1}^{t_2} \frac{\partial u}{\partial t}(x, t) dx dt = \int_{x_1}^{x_2} \int_{t_1}^{t_2} f(x, t) dx dt - \int_{x_1}^{x_2} \int_{t_1}^{t_2} \frac{\partial q}{\partial x}(x, t) dx dt$$

Therefore,

$$\frac{\partial u}{\partial t} = f(x,t) - \frac{\partial q}{\partial x}$$

Now using the Fourier Law, we assume that $q = -k \frac{\partial u}{\partial x}$, where k is viscosity constant that depends on the material. In case of k = 1, we get the equation

$$\frac{\partial u}{\partial t} = f(x,t) + \frac{\partial^2 u}{\partial x^2}, x \in \mathbb{R}, t > 0.$$

In higher dimensions, $x \in \mathbb{R}^n$, we get

$$\frac{\partial u}{\partial t} = f(x,t) + \Delta u, \ x \in \mathbb{R}^n, \ t > 0.$$

4.2 Fundamental solution

We consider the problem

$$u_t = \Delta u, \, t > 0, \mathbb{R}^n. \tag{2.1}$$

We note that if u(x,t) solves this equation, then $u(\lambda^2 t, \lambda 0x)$ also solves for $\lambda \in \mathbb{R}$. This scaling indicates the ratio $\frac{r^2}{t}$, (r = |x|) is important for heat equation. So we can search for solution u(x,t) of the form

$$u(x,t) = v\left(\frac{r^2}{t}\right), r = |x|, t > 0, x \in \mathbb{R}^n$$

So we assume that

$$u(x,t) = \frac{1}{t^{\alpha}} v\left(\frac{x}{t^{\beta}}\right), x \in \mathbb{R}^{n}, t > 0,$$

where α, β will be found. Taking $y = \frac{x}{t\beta}$, we get

$$u_t = -\left(\frac{\alpha}{t^{\alpha+1}}v(y) + \frac{\beta}{t^{\alpha+1}}\nabla v \cdot y\right)$$
$$\Delta u = \frac{1}{t^{\alpha+2\beta}}\Delta v$$

Substituting this in the equation (2.1) and taking $\beta = \frac{1}{2}$, we get

$$u_t - \Delta u = \frac{1}{t^{\alpha + 1}} \left(\alpha v(y) + \frac{1}{2} \nabla v \cdot y + \Delta v \right) = 0$$
 (2.2)

We simplify this further by taking v(y) = w(|y|) for some $w : \mathbb{R} \to \mathbb{R}$. Then

$$\frac{\partial v}{\partial y_i} = w'(r) \frac{y_i}{|y|} = w'(r) \frac{y_i}{|y|} \implies \nabla v \cdot y = w'(r)r$$
$$\Delta v = w'' + \frac{n-1}{r}w'$$

Therefore from (2.1), we get

$$\alpha w + \frac{1}{2}rw' + w'' + \frac{n-1}{r}w' = 0$$

Now setting $\alpha = \frac{n}{2}$ we can write the above equation in the exact form as

$$(r^{n-1}w')' + \frac{1}{2}(r^nw)' = 0$$

Upon integration, we get $r^{n-1}w'(r) + \frac{1}{2}r^nw = a$. Assuming $\lim_{r \to \infty} w(r), w'(r) = 0$, we get $w(r) = be^{\frac{-r^2}{4}}$, where b is a constant of integration. Therefore we have the

$$u(x,t) = \frac{b}{t^{\frac{n}{2}}} e^{\frac{-|x|^2}{4t}}$$

Definition 4.2.1 Fundamental solution: The function

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{|x|^2}{4t}}, & x \in \mathbb{R}^n, t > 0\\ 0 & x \in \mathbb{R}^n, t < 0 \end{cases}$$

is called fundamental solution. The choice of $b=\frac{1}{(4\pi)^{n/2}}$ is due to the following

Lemma 4.2.1 The fundamental solution $\Phi(x,t)$ satisfies

$$I. \int_{\mathbb{R}^n} \Phi(x,t) dx = 1,$$

4.2 Fundamental solution 73

2.
$$\lim_{t \to 0^+} \Phi(x,t) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}$$
3.
$$\Phi_t - \Delta_x \Phi = 0, x \in \mathbb{R}^n, t > 0$$

Proof. 1. Taking the transformation $z = \frac{x}{2\sqrt{t}}$ we get

$$\int_{\mathbb{R}^n} \Phi(x,t) dx = \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-|z|^2} dz = 1.$$

- 2. follows directly from the definition.
- 3. Direct calculation from the definition. \Box

Lemma 4.2.2 $\Phi(x,t) \to \delta$ in $\mathcal{D}'(\mathbb{R}^n)$. i.e.,

$$\lim_{t \to 0^+} \int_{\mathbb{R}^n} \Phi(x, t) \psi(x) dx = \psi(0), \text{ for all } \psi \in \mathscr{D}(\mathbb{R}^n).$$
 (2.3)

Proof. Let $\psi \in \mathcal{D}(\mathbb{R}^n)$. We notice that

$$\psi(0) = \int_{\mathbb{R}^n} \Phi(x,t) \psi(x) dx + \int_{\mathbb{R}^n} \Phi(x,t) (\psi(0) - \psi(x)) dx$$

For any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|x| < \delta \implies |\psi(x) - \psi(0)| < \varepsilon$$

From (1) of above Lemma, we get

$$\left| \int_{\mathbb{R}^n} \Phi(x,t) (\psi(0) - \psi(x)) dx \right| \le \int_{\mathbb{R}^n} \Phi(x,t) |\psi(0) - \psi(x)| dx$$

$$= \int_{B_{\delta}(0)} + \int_{\mathbb{R}^n \setminus B_{\delta}(0)} \Phi(x,t) |\psi(0) - \psi(x)| dx$$

$$:= I_{\varepsilon} + J_{\varepsilon}$$

$$\le \varepsilon \int_{\mathbb{R}^n} \Phi(x,t) dx + J_{\varepsilon} = \varepsilon + J_{\varepsilon}$$

$$|J_{\varepsilon}| \leq 2\|\psi\|_{\infty} \int_{\mathbb{R}^n \setminus B_{\delta}(0)} \Phi(x,t) dx \leq \frac{C}{t^{n/2}} \int_{\delta}^{\infty} e^{-\frac{r^2}{t}} r^{n-1} dr \longrightarrow 0 \text{ as } t \to 0^+. \quad \Box$$

Theorem 4.2.1 Φ *is a fundamental solution of* $(\partial_t - \Delta)$ *in* \mathbb{R}^{n+1} . *i.e.*,

$$(\partial_t - \Delta_x)\Phi(x,t) = \delta(x,t)$$
 in $\mathcal{D}'(\mathbb{R}^{n+1})$,

where $\delta(x,t)$ is the Dirac delta distribution at (0,0).

Proof. Let $\phi \in \mathcal{D}(\mathbb{R}^{n+1})$. Then define the cut off functions

$$\Phi_{\varepsilon}(x,t) = \begin{cases} \Phi(x,t), & t > \varepsilon \\ 0, & t \leq \varepsilon \end{cases}$$

Then $\Phi_{\varepsilon} \to \Phi$ in $\mathscr{D}'(\mathbb{R}^{n+1})$. So it enough to show $(\partial_t - \Delta_x)\Phi_{\varepsilon} \to \delta$ in $\mathscr{D}'(\mathbb{R}^{n+1})$. Indeed, for $\phi \in \mathscr{D}(\mathbb{R}^{n+1})$, using integration by parts and the compact support of ϕ ,

$$\begin{split} \int_{\mathbb{R}^{n+1}} \Phi_{\varepsilon}(-\partial_{t} - \Delta_{x}) \phi &= \int_{\varepsilon}^{\infty} \int_{\mathbb{R}^{n+1}} \Phi(-\partial_{t} - \Delta) \phi dx dt \\ &= \int_{\mathbb{R}^{n+1}} [(-\partial_{t} - \Delta_{x}) \Phi_{\varepsilon}] \phi + \int_{\mathbb{R}^{n}} \Phi(x, \varepsilon) \phi(x, e) dx \\ &= \int_{\mathbb{R}^{n}} \Phi(x, \varepsilon) \phi(x, \varepsilon) dx \end{split}$$

But then

$$\begin{split} \left| \phi(0,0) - \int_{\mathbb{R}^n} \mathbf{\Phi}(x,\varepsilon) \phi(x,\varepsilon) dx \right| &= \int_{\mathbb{R}^n} \mathbf{\Phi}(x,\varepsilon) (\phi(x,\varepsilon) - \phi(0,0)) dx \\ &= \int_{B_{\delta}(0)} + \int_{\mathbb{R}^n \setminus B_{\delta}(0)} \mathbf{\Phi}(x,\varepsilon) (\phi(x,\varepsilon) - \phi(0,0)) dx \\ &= I + I \end{split}$$

For any $\eta > 0$ there exists $\delta > 0$ such that $\sqrt{x^2 + \varepsilon^2} < \delta$ implies $|\phi(x, \varepsilon) - \phi(0, 0)| < \eta$. Therefore, $|I| < \eta$. To estimate J we note that

$$|J| \leq 2\|\phi\|_{\infty} \int_{\mathbb{R}^n \backslash B_{\delta}(0)} \Phi(x, \varepsilon) dx \leq \frac{C}{\varepsilon^{n/2}} \int_{\delta}^{\infty} e^{-\frac{r^2}{\varepsilon}} r^{n-1} dr \longrightarrow 0 \text{ as } \varepsilon \to 0^+.$$

Now δ and ε can be chosen to be small so that I+J is as small as possible. Hence the theorem. \Box

4.3 Cauchy Problem

Consider the problem: Given g(x), find u(x,t) satisfying

(CP)
$$\begin{cases} u_t - \Delta u = 0, x \in \mathbb{R}^n, t > 0 \\ u(x,0) = g(x), x \in \mathbb{R}^n \end{cases}$$

We have the following theorem

Theorem 4.3.1 *Suppose* $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. *Then*

$$u(x,t) = (\Phi * g)(x) = \int_{\mathbb{R}^n} \Phi(x - y, t)g(y)dy$$

is a solution of the Cauchy Problem (CP)

Proof. It is easy to see that Φ is differentiable for any $(x,t) \in (\mathbb{R}^n \times [\delta,\infty))$ and all derivatives are bounded and integrable. Therefore we can take the derivatives inside the integral sign to get

$$u_t - \Delta u = \int_{\mathbb{R}^n} (\boldsymbol{\Phi}_t - \Delta_x \boldsymbol{\Phi})(x - y, t) g(y) dy = 0.$$

It remians to show that $\lim_{t\to 0^+, x\to x_0} u(x,t) = g(x_0)$. Using the properties of Φ , and the continuity of g, $\varepsilon > 0$, there exists 4>0 such that

$$|x-x_0| < \delta \implies |g(x)-g(x_0)| < \varepsilon$$
.

Then it is easy to see the following

4.3 Cauchy Problem 75

$$|g(x_0) - u(x,t)| \le \left| \int_{\mathbb{R}^n} \Psi(x - y, t) (g(x_0) - g(y)) dx \right|$$

$$\le \int_{\mathbb{R}^n} \Phi(x - y, t) |g(x_0) - g(y)| dx$$

$$= \int_{B_{\delta}(x_0)} + \int_{\mathbb{R}^n \setminus B_{\delta}(x_0)} \Phi(x - y, t) |g(x_0) - g(y)| dx$$

$$:= I_{\varepsilon} + J_{\varepsilon}$$

$$\le \varepsilon \int_{\mathbb{R}^n} \Phi(x - y, t) dy + J_{\varepsilon} = \varepsilon + J_{\varepsilon}$$

To estimate J_{ε} , note that in this integral $|y-x_0| \ge \delta$ and as $x \to x_0$, we may assume that $|x-x_0| < \delta/2$. Hence we get

$$|y-x_0| \le |y-x| + |x-x^0| \le |y-x| + \frac{\delta}{2} \le |y-x| + \frac{1}{2}|y-x_0|$$

Therefore, we get $|y-x| \ge \frac{1}{2}|y-x_0|$. Using this we estimate J_{ε} as

$$|J_{\varepsilon}| \leq 2\|g\|_{\infty} \int_{\mathbb{R}^n \setminus B_{\delta}(x)} \Phi(x - y, t) dx \leq \frac{C}{t^{n/2}} \int_{\delta}^{\infty} e^{-\frac{r^2}{t}} r^{n-1} dr \longrightarrow 0 \text{ as } t \to 0^+.$$

Hence, if $|x - x_0| < \frac{\delta}{2}$ and t > 0 small, we get $|u(x, t) - g(x_0)| < 2\varepsilon$. \square

The following stability estimate follows from the properties of Φ

Corollary 4.3.1 *If g is continuous and bounded, then*

$$||u(.,t)||_{\infty} \le ||g||_{\infty}$$
, for all $t > 0$.

Next we consider the following nonhomogeneous problem:

(CPN)
$$\begin{cases} u_t - \Delta u = f(x,t), x \in \mathbb{R}^n, t > 0, \\ u(x,0) = 0, x \in \mathbb{R}^n. \end{cases}$$

Duhamel's Principle: This is a general principle of getting solutions of nonhomogeneous equation using the solutions of homogeneous problems. To understand the principle, let us recall the ODE case. The nonhomogeneous IVP:

$$y' + ay = b(t), y(t_0) = 0$$

has solution

$$y(t) = \int_0^t b(s)e^{-a(t-s)}ds$$
 (3.4)

In otherwords,

$$y(t) = \int_0^t x(t-s)b(s)ds$$

where x(t) satisfies the homogeneous problem x' + ax = 0. Moreover $x(s,t) = b(s)e^{-a(t-s)}$ satisfies the IVP:

$$x' + ax = 0, x(s) = b(s)$$
 (3.5)

So the formula in (3.4) may be written

$$y(t) = \int_0^t x(t,s)b(s)ds$$

Now going back to the heat equation (CPN), we write the homogeneous problem similar to (3.5) as: U(x,t,s) satisfies

$$\begin{cases}
U_t(x,t,s) - \Delta_x U(x,t,s) = 0, \ t > s, \ x \in \mathbb{R}^n, \\
U(x,t,s) = f(x,s) \text{ on } \{t = s\}
\end{cases}$$
(3.6)

Then U(x,t,s) may be written as

$$U(x,t,s) = \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) dy.$$

Theorem 4.3.2 If $f \in C^2(\mathbb{R}^n \times \mathbb{R}^+)$, f(x,t) and all its second order partial derivatives are continuous and bounded. Then the function u(x,t) defined as

$$u(x,t) = \int_0^t U(x,t,s)ds$$

solves the problem (CPN).

Proof. From the definition of U, we have

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) dy ds$$

taking the transformation $x - y \mapsto y$ and $t - s \mapsto s$ we get

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(y,s) f(x-y,t-s) dy ds$$

Then using Newton-Liebnitz formula,

$$u_{t} = \int_{\mathbb{R}^{n}} \Phi(y, t) f(x - y, 0) dy + \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) \frac{\partial}{\partial t} f(x - y, t - s) dy ds$$
$$\Delta u = \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) \Delta_{x} f(x - y, t - s) dy ds$$

Therefore,

$$u_{t} - \Delta u = \int_{0}^{\varepsilon} \int_{\mathbb{R}^{n}} + \int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y, s) (\partial_{t} - \Delta_{x}) f(x - y, t - s) dy ds + \int_{\mathbb{R}^{n}} \Phi(y, s) f(x - y, 0) dy$$

$$= J_{\varepsilon} + I_{\varepsilon} + K$$
(3.7)

Since $f \in C_c^2(\mathbb{R}^n)$, we have the estimate

$$|J_{\varepsilon}| \leq C\varepsilon \int_{\mathbb{D}^n} \Phi(y,s) dy \to 0$$
, as $\varepsilon \to 0$

$$I_{\varepsilon} = \int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) (\partial_{t} - \Delta_{x}) f(x - y, t - s) dy ds$$

$$= -\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) \partial_{s} f(x - y, t - s) dy ds - \int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) \Delta_{y} f(x - y, t - s) dy ds$$

Integration by parts on the first term, yields

4.4 Maximum Principles 77

$$-\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) \partial_{s} f(x-y,t-s) dy ds = \int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \frac{\partial}{\partial s} \Phi(y,s) f(x-y,t-s) dy ds$$

$$-\int_{\mathbb{R}^{n}} \Phi(y,s) f(x-y,t-s) \Big|_{s=\varepsilon}^{t}$$

$$= \int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \frac{\partial}{\partial s} \Phi(y,s) f(x-y,t-s) dy ds$$

$$-\int_{\mathbb{R}^{n}} \Phi(y,t) f(x-y,0) dy + \int_{\mathbb{R}^{n}} \Phi(y,\varepsilon) f(x-y,t-\varepsilon) dy$$

Again integration by parts on second term and using the fact that f has compact support we get

$$-\int_{\varepsilon}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) \Delta_{y} f(x-y,t-s) dy ds = -\int_{\varepsilon}^{t} \Delta_{y} \Phi(y,s) f(x-y,t-s) dy ds$$

Putting these things back in I_{ε} we get

$$I_{\varepsilon} = K + \int_{\mathbb{R}^n} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) dy + \int_{\varepsilon}^t \int_{\mathbb{R}^n} (\Phi_t - \Delta_y \Phi) f(x - y, t - s) dy ds$$

The last term is equal to zero as t = 0 is not in the domain of integration and Φ satisfies the heat equation for all t > 0. So from (3.7), we get

$$u_t - \Delta u = \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^n} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) dy$$

As in the previous theorems, noting that for any $\eta > 0$, there exists a $\delta > 0$ such that

$$|y| + \varepsilon < \delta \implies |f(x - y, t - \varepsilon) - f(x, t)| < \eta$$

$$\left| \int_{\mathbb{R}^n} \Phi(y, \varepsilon) f(x - y, t - \varepsilon) dy - f(x, t) \right| \leq \int_{\mathbb{R}^n} \Phi(y, \varepsilon) \left| f(x - y, t - \varepsilon) - f(x, t) \right| dy$$

$$= \int_{B_{\delta}(0)} + \int_{\mathbb{R}^n \setminus B_{\delta}(0)} \Phi(y, \varepsilon) \left| f(x - y, t - \varepsilon) - f(x, t) \right| dy$$

$$\leq \eta \int_{\mathbb{R}^n} \Phi(y, \varepsilon) dy + 2 \|f\|_{\infty} \int_{\mathbb{R}^n \setminus B_{\delta}(0)} \Phi(y, \varepsilon) dy$$

$$\leq \eta + \frac{C}{\varepsilon^{n/2}} \int_{\delta}^{\infty} e^{-\frac{r^2}{\varepsilon}} r^{n-1} dr \longrightarrow 0 \text{ as } \eta, \varepsilon \to 0^+$$

Hence the proof of the theorem. \Box

4.4 Maximum Principles

The heat equation also satisfies the maximum principles. Let Ω be a bounded domain in \mathbb{R}^n and let T > 0. Define $\Omega_T = \Omega \times (0,T)$. We define the parabolic boundary

$$\Gamma = \{(x,t) \in \overline{\Omega_T} : x \in \partial \Omega \text{ or } t = 0\}$$

Theorem 4.4.1 Let $u \in C^2(\Omega_T) \cap C(\overline{\Omega_T})$ and all its second order partial derivatives are continuous. Suppose u satisfy

$$u_t \leq \Delta u$$
 in Ω_T .

Then u achieves its maximum on the parabolic boundary of Ω_T . i.e.,

$$\max_{\overline{\Omega_T}} u(x,t) = \max_{\Gamma} u(x,t)$$

Proof. As in the elliptic case, we proceed in two steps.

1. case 1: $u_t < \Delta u$ in Ω_T . For $0 < \tau < T$, consider

$$\Omega_{\tau} = \Omega \times (0, \tau), \ \Gamma_{\tau} = \{(x, t) \in \overline{\Omega_{\tau}}, x \in \partial \Omega \ or \ t = 0\}$$

If the maximum of u is on $\overline{\Omega_{\tau}}$ occurs at $x \in \Omega$ and $t = \tau$, then $u_t(x, \tau) \ge 0$ and $\Delta u(x, \tau) \le 0$, violating our assumption. Similarly, u cannot attain an interior maximum on Ω_{τ} . Hence the result holds on Ω_{τ} :

$$\max_{\overline{\Omega_{\tau}}} u(x,t) = \max_{\Gamma_{\tau}} u(x,t) \le \max_{\Gamma} u(x,t)$$

Now by continuity of u, $\max_{\Omega_T} u = \lim_{\tau \to T} \max_{\overline{U_\tau}} u$. This proves the theorem in case 1.

2. case 2: $u_t \leq \Delta u$ in Ω_T .

Let v = u - kt for some k > 0. Notice that $v \le u$ on $\overline{\Omega_T}$ and $\Delta v - v_t = \Delta u - u_t + k > 0$ in Ω_T . Thus by case 1,

$$\max_{\overline{\Omega_T}} u = \max_{\overline{\Omega_T}} (v + kt) = \max_{\overline{\Omega_T}} v + kT = \max_{\Gamma} v + kT \le \max_{\Gamma} u + kT$$

letting $k \to 0$ establishes the theorem. \square

As a corollary we have the following uniqueness result

Corollary 4.4.1 The initial boundary value problem

$$u_t - \Delta u = f(x,t) \text{ in } \Omega_T$$

 $u(\partial \Omega, t) = g(x,t), u(x,0) = h(x), x \in \Omega$

has at most one solution.

Proof. Suppose u_1 and u_2 are two solutions. Then $u = u_1 - u_2$ satisfies the problem

$$u_t - \Delta u = 0 \text{ in } \Omega_T$$

$$u(\partial \Omega, t) = 0, \, u(x, 0) = 0, \, x \in \Omega$$

Since the maximum of u on the parabolic boundary is 0, by above theorem, $u \equiv 0$.

Next we prove the following Maximum principle for Cauchy problem

Theorem 4.4.2 Suppose u(x,t) and all its second order Partial derivatives are continuous in $\mathbb{R}^n \times (0,T)$, u(x,t) is continuous in $\mathbb{R}^n \times (0,T]$ and

$$u(x,t) \le Ae^{a|x|^2}, x \in \mathbb{R}^n, 0 \le t \le T$$

for some A, a > 0. If u is a solution of the Cauchy problem

$$u_t = \Delta u, x \in \mathbb{R}^n, t > 0$$

$$u(x,0) = g(x), x \in \mathbb{R}^n$$

Then

$$\sup_{\mathbb{R}^n \times [0,T]} u(x,t) = \sup_{\mathbb{R}^n} g(x).$$

Proof. Let us first assume that 4aT < 1. Then there exists $\varepsilon > 0$ such that $4a(T + \varepsilon) < 1$. Fix $y \in \mathbb{R}^n$, $\mu > 0$ and define

$$v(x,t) = u(x,t) - \frac{\mu}{(T+\varepsilon-t)^{n/2}} e^{\frac{|x-y|^2}{4(T+\varepsilon-t)}} \quad x \in \mathbb{R}^n, t > 0.$$

Then $v_t - \Delta v = 0$ in $\mathbb{R}^n \times (0, T]$. For r > 0, consider $\Omega_T = B_r(y) \times (0, T]$. Then by previous maximum principle,

$$\max_{\overline{\Omega_T}} v(x,t) = \max_{\Gamma_T} v(x,t). \tag{4.8}$$

Now note that

$$v(x,0) = u(x,0) - \frac{\mu}{(T+\varepsilon)^{n/2}} e^{\frac{|x-y|^2}{4(T+\varepsilon)}} \le u(x,0) = g(x).$$

Also if $y \in \partial B_r(x), 0 \le t \le T$,

$$v(x,t) = u(x,t) - \frac{\mu}{(T+\varepsilon-t)^{n/2}} e^{\frac{|x-y|^2}{4(T+\varepsilon-t)}}$$

$$\leq Ae^{a|x|^2} - \frac{\mu}{(T+\varepsilon)^{n/2}} e^{\frac{r^2}{4(T+\varepsilon)}}$$

$$\leq Ae^{a(|y|+r)^2} - \frac{\mu}{(T+\varepsilon)^{n/2}} e^{\frac{r^2}{4(T+\varepsilon)}}$$

Now $4a(T + \varepsilon) < 1$ implies $\frac{1}{4(T + \varepsilon)} = a + \gamma$ for some $\gamma > 0$. Therefore,

$$v(x,t) \le Ae^{a(|y|+r)^2} - \mu(4(a+\gamma))^{n/2}e^{(a+\gamma)r^2}$$

Taking y = 0 and if r is taken large enough, we get

$$v(x,t) \le Ae^{ar^2} - \mu (4(a+\gamma))^{n/2} e^{(a+\gamma)r^2} \le \sup_{m,n} g(x)$$

Therefore, by (4.8)

$$v(y,t) \le v(x,t) \le \sup g$$
, for all $y \in \mathbb{R}^n, 0 \le t \le T$.

Now taking supremum over |x| = r we get

$$\sup_{\overline{B_r} \times [0,T]} v(x,t) \le \sup_{\mathbb{R}^n} g(x)$$

Now taking $r \to \infty$ and $\mu \to 0$ we get the result. In case $4aT \ge 1$. Then apply this result for $[0, T_1], [T_1, T_2]$ with $T_1 = \frac{1}{8a}$. \square

Corollary 4.4.2 Uniqueness: The Cauchy problem

$$u_t = \Delta u + f(x,t), x \in \mathbb{R}^n, t > 0$$
$$u(x,0) = g(x), x \in \mathbb{R}^n$$

has at most one solution which has the growth $u(x,t) \le Ae^{a|x|^2}$.

Proof. If u_1 and u_2 are two solutions. Then consider the function $u = u_1 - u_2$. The Linearity of $\partial_t - \Delta$ suggests that u satisfies

$$u_t = \Delta u, x \in \mathbb{R}^n, t > 0$$
$$u(x,0) = 0, x \in \mathbb{R}^n$$

Then by the maximum principle, $u \equiv 0$. \square

Now recall that in case of harmonic functions all the distributional solutions of $\Delta u = 0$ are C^{∞} (Weyl theorem). In case of parabloic, we have the following Regularity result:

Theorem 4.4.3 If u(x,t) satisfies $u_t = \Delta u$ in the sense of distributions in U. Then $u \in C^{\infty}(U)$.

Proof. Let $\xi = (x_0, t_0) \in U$ and $\varepsilon > 0$. Consider $\phi \in \mathcal{D}(B_{4\varepsilon}) \subset U$ such that $\phi \equiv 1$ in $B_{3\varepsilon}(\xi)$. Consider $w = \phi u$ and $v = \partial_t w - \Delta w$, then v is a distribution in U with support in $B_{4\varepsilon}$ and v = 0 in $B_{3\varepsilon}$. Then we know from theory of Distributions that

$$w = \Phi * v \text{ in } \mathscr{D}'$$
.

Now we claim that w is smooth around ξ . Choose $\psi \in C^{\infty}(\mathbb{R}^{n+1})$ with $\psi = 0$ in $B_{\varepsilon}(0)$ and $\psi = 1$ in $\mathbb{R}^{n+1} \setminus B_{2\varepsilon}(0)$. Then ψ vanishes in a neighbouhood of the singularity of $\Phi(y,s)$. So $\psi \Phi$ is a smooth function

Now for $(x,t) \in B_{\varepsilon}(\xi)$ and $(y,s) \in supp(v) \subset B_{4\varepsilon}(\xi) \cap (\mathbb{R}^{n+1} \setminus B_{3\varepsilon}(\xi))$, we have

$$|(x,t)-(y,s)| > 2\varepsilon \implies \psi(x-y,t-s) = 1.$$

Therefore,

$$(\boldsymbol{\psi}\boldsymbol{\Phi}) * \boldsymbol{v} = \boldsymbol{\Phi} * \boldsymbol{v} = \boldsymbol{w}, (\boldsymbol{x},t) \in B_{\varepsilon}(\boldsymbol{\xi})$$

which implies that w is smooth on $B_{\varepsilon}(\xi)$. But $w = \phi u$ and $\phi = 1$ in B_{ε} . Therefore u is smooth.

4.5 Problems

- 1. Show that $\int_{\mathbb{R}^n \setminus B_{\delta}(0)} \Phi(x,t) dx \to 0$ as $t \to 0^+$.
- 2. $\Phi_{\varepsilon} \to \Phi$ in $\mathscr{D}'(\mathbb{R}^{n+1})$
- 3. Suppose $U = \Omega \times (0,T)$ and $u \in C^3(U) \cap C(\overline{U})$ satisfies $u_t \leq \Delta u + cu$ in U, where $c \leq 0$ is a constant. If $u \geq 0$, show that

$$\max_{(x,t)\in\overline{U}}u(x,t) = \max_{(x,t)\in\Gamma}u(x,t)$$

where $\Gamma = \{(x,t) \in \overline{U} : x \in \partial \Omega \text{ or } t = 0\}.$