Chapter 2
Higher order Equations

This theorem explores the method of solving PDEs using power series expansion, with the underlying
assumption that any realistic solution must have a convergent power series expansion(that is real analytic)
in some neighbourhood of the initial point/surface. However, analyticity is not an appropriate requirement
as many real world problems have non-real analytic solutions and hence one needs also study the existence
and uniqueness of non-analytic solutions. Yet this is a powerful tool to understand the local solutions.

The theorem of Cauchy-Kovalevski asserts the local existence of solutions to system of Initial value prob-
lems of partial differential equations with initial conditions prescribed on a non-characteristic hyper surface.
There is a severe restriction that the coefficients in the equations, the initial data and the surface need to be
real analytic.

The following questions are naturally asked.

e Does there exists C™ solution when coefficients and data is replaced by differentiability? In particular,
does a PDE with C* data in general has unique C* solution?
o Can there be non-analytic solutions for Cauchy problem with real analytic data?. In other words, does

there exists two or more solutions with only one of them being real analytic.

The answer to the first question is no. For the second question, when the equation is linear, Holmgren’s
theorem guarantees that the answer is no. When the equation is nonlinear, the problem is still unsettled.
We will see that the theorem only asserts existence. It does not say anything about well posedness. That

is a small change in the initial condition may lead to large change in the series solution.

2.1 Cauchy Problem: Higher order equations

Let (x1,x2,...x,) € R" and x = (¥, x,,). Consider the probem

0™u o ,
EF T = G(x,D%u), x = (x',x,),x, >0 (1.1)
with initial data 5 .
u "=y
:a—xn:W:OOn{x:(xl,xn) :xn:0,}

0
oxm’

n

where D%u is the vector of all partial derivatives up to order m, except
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A general non characteristic initial value problem for a system of quasilinear partial differential equation

can always be reduced to the following system of first order equations:

al/ll‘ nl N k au/ .
axn = k;l;al](l))a—xk +bl(P), 1= 1,2,...,N (12)

with initial conditions/ Cauchy data: u; = 0 on {x = (x',x,), x, =0} fori=1,2,...,N.
Here we may assume that the coefficients aﬁ j is independent of x,,. Indeed, we can define a new variable
uy+1 = X, and add one more equation ()SLM“ =1 to the system.

The problem in (1.2) can be transformed as Cauchy problem for system. In fact, one can define u; =
u,uy = 3_2 =..uy= WW;{Q‘ = G(x,uy,uy,.....uy). We describe the procedure below.
For simplicity, consider the following second order equation, for a,b,c,d,e € R

2%u 2%u 0u du  du

Consider the transformation

Uy =u, Up = Uy, U3 = Uy.

Then
Jduy Jdur duj 0%u
—_— = U —_—— = —_——
dx O 9x  Jx \| drdx
and (1.3) imply
dun Jur Jdu Jus
Zapl L2 — =0.
“or T (ax T ) Tegy Tdmtentf=0
By considering the vector U = (uy,up,u3)”, we get
U oU
A 4B =CU+F
ot dx

where A, B and C are 3 x 3 matrices and F' is a vector.

Example 2.1. u; — iy = 0.

Herea=1,b—0,c=c*,d=e= f =0, setting u; = u,ur = u;,u3 = u,, we get

aul
oM _y
dx 3
2 _ guy
dx !
8u2 23%3
=252 =0
o ox
Then
10 0 ] [%u 000 | [%u 0017 [
01 0 | [Z2|+]00-1||Z2]+]000 | |u|=0
00| | % 010 | |% 000 | |us
ie.,
J %
a%%  g%% Lcu—o
dx ot

where
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10 0 00 0 00—1
A=1]01 0 |,B=|00-1|,C=1]00 0
00 —c? 01 0 000

As A is nonsingular, multiplying by A~ we get

U  _JdU .
Z-FBE-FCU—O.

The Cauchy Kovalevski theorem states:

Theorem 2.1.1 Assume that the functions afj and bi(i;j = 1;2;::5; Ny k = 1;2;:::5n) are real analytic in a
neighbourhood of the origin in R*™™N=1. Then the Cauchy problem in (1.1) admits a unique real analytic

solution in a neighbourhood of the origin.

Example 2.2. Consider the following IVP:
W —u® =0, u(0)=1

We will try to construct the unknown function # by computing its derivatives at the initial time 0. Then
formally we have

u(t) = u(0) +u'(0)t + %u’/(O)t2 +..

This formal relation becomes rigorous when the power series on the right hand side converges in some
neighbourhood of 0.

The first two terms in the series are already known. It turns out that we can compute the remaining terms
recursively using the given initial values and the differential equation:

Then it is clear that we only need to show the convergence of the series

3 15
T4+ = +...
Fed S gt

However it is not clear how to directly bound these coefficients.

Example 2.3. Consider the Cauchy Problem
Uy + Uttty —uy = u?, u(x,0) =1, uy(x,0) =x

In the normal form

Uy—Uu
_ y XX
uyy—u—k—.

Now it is easy to see that all partial derivatives of u can be obtained. From the given initial condition we
have
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1y (%,0) =0, uyy(x,0) =1

uy(x,0) =X, U (x,0) =0

Uy (x,0) — e (x,0)
u(x,0)

uyy(x,0) = u(x,0) + =1+4+x

Similarly we can obtain partial derivatives of all orders. Now we can write the Taylor series of u

1 2
u(e,y) = U(,0) + ity (5,0) + 5571y, (1,0) . = 14+3(1) + 5 (142 + .

Does this series converge?
Cauchy problem from Complex Analysis view
Consider the following Cauchy problem for the linear PDE:

wy —iwy =0, w(x,0) = g(x)

where w = u + iv is complex valued function. By identifying z = x + iy, we may also consider w as a
function of complex variable z. Now if w € C! satisfies this equation, by Cauchy-Riemann equations we
know that w is a analytic function and has an absolutely convergent Taylor series about any point. Then
we find that w(x+ i0) = g(x) has absolutely convergent Taylor series. Hence g is real analytic. That is,
the problem has a solution only when real and imaginary parts of g are real analytic. Conversely, if
g(x) =Y a,(x—x0)" is absolutely convergent for |x —xo| < R, then we can define w(z) = Y. a,(z —xo)",
which is absolutely convergent for |z — x| < R. Therefore, w is an analytic function and hence w must
satisfy Cauchy-Riemann equations: wy = iw,. Therefore, this problem has C! solution if and only if g is
real analytic.

Now let us try to construct a Taylor series for the two-variable function w(x,y) satisfying

wy = iwy, w(x,0) =g(x)
The Taylor series of w(x,y) around (0,0) is

3! 9%w(0,0) .
u(x,y) =Z%k(!)y’xk7

and then show its convergence. Note that the uniqueness part is trivial.

w(0,0) =¢(0)
2:w(0,0) = ¢'(0)
o,w(0,0) = id,w(0,0) = ig'(0)
dw(0,0) = g"(0)
3,0:w(0,0) = id?w(0,0) = ig"(0)
9;w(0,0) = id,d,w(0,0) = i*g" (0)

Now using the equation, we can compute all derivatives as

9] 9k w(0,0) = id) ' 9w (0,0) = ... = 95T u(0,0) = i/ g N (0).
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Thus we obtain the Taylor series

Now let us assume that

Setting [ = j+ k we see that the series of w is dominated by the series

c i (j+k)!’2’j‘£‘k
i R R

which can be re-ordered into

S L

m=0 j+k=m J m=0

It is clear that the convergence holds whenever |y| + |x| < R.

27

For equations which are not linear, it can be hard to obtain formulas for the coefficients and estimate their

sizes. The method of majorants in an indirect way to bound the coefficients. Here we describe this first for

ODE

2.2 Cauchy Kovalevski theorem for ODE

Theorem 2.2.1 Ler f: (—1,1) — R be real analytic in some neighbourhood of 0 and u(x) is the unique

solution of semilinear ODE
d
= = flu(), u(0) =o0.

Then u is also real analytic in a neighbourhood of 0.

Proof. There are several simple proofs. Here we describe a proof which may be generalized to Cauchy

problem of PDE.
Suppose u is C™, then by repeated differentiation we see that

d? d ,
S =W = wWfw
du

T = W)+ () (w)




28 2 Higher order Equations

where p, is a polynomial in n variables with all non-negative integer coefficients. It is easy to see that

pa(x,y) =xy, p3(x,y,2) =x*z+xy°

and so on. Note that these polynomials do not depend on f(r). Also,

d"u —
7=(0) = Pu(£(0),£(0), £7(0),.... /" 1(0))
Therefore,
d”u 0 _ 0 / 0 /! 0 n—1 0
|2 (O = 1Pa(£(0), £(0), £7(0), .., 7~ (0))]
< u(IFO)LIF O " (O)],-... 11 (0)]). 2.4)
Now suppose there exists a real analytic function g(¢) such that |f*(0)| < gk(0) for all k and % =
g(v()), v(0) = 0 has real analytic solution.
Then by above observation as in (2.4),
T (0) = pn (5(0).£(0),"(0). .8~ (0) es)
Zor(0) = Pu (8(0),8'(0),87(0), .. :
and
a (LFOL L O L"), |f" 1 (0)]) < pu (8(0),8'(0),8"(0),...8" '(0)) (2.6)
From (2.4), (2.5) and (2.6), we have
Vv*(0) > [u"(0)] for all n.
Since v is real analytic with radius of convergence p(say), then
Y 0" < ¥ (0)p" <o
n! pr= n! p
n=0 n=0
and hence the following function is well defined for |x| < r,
| _ o
w(x) = Y, —pu (£(0).£/(0).f" (0, S (0)) 2" =}, —u (0)". @7)
n=0""" n=0""

Now since expression in (2.7) is real analytic, it is easy to check that w(x) is a solution by comparing the
derivatives at 0.

To complete the proof, we show the existence of v and g. To see this, we know that Z = F"(0)p™ con-
= n!
verges. Let

1
€ = max| - f"(0)p".

1
Then max |;f” (0)] < Cp™". Now we define
n .
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Clearly, | f"(0)| < g"(0). Consider the problem

dv_ Cp

= 0)=0
yrr— v(0)
ie.,
w —pV +Cp=0
1
In other words, Ed( v?) —d(pv) +Cp = 0. Hence v(x —+/p? —2Cpx. Now it is easy to see that v is

: P
real analytic for |x| < &.

2.2.1 Multi Index of Laurent- Schwarz

A multi index is a vector & = (& — 1,....,0,;) where each ¢; is a non-negative integer. The notation

o > B means o; > f; for every i. For any multi-index o, we denote
=01+ +...+ 0y, ! =0lon!....ay!.

For any vector x = (x1,x2,...,x7) ER", a = (o, 00, ...,0,) € N".

(07
we denote x* = x| 'xgz x,;* and

80!1+(Xz+-.4+0£n

8x1 « 8x20‘2 ...8xd°‘d !

D°f(x)=D{"D*..DJ f =

Example 2.4. With n =3 and x = (x,y,z), we have

9*f L2.19)

plol =, N
xdz

p0:20) f o

Theorem 2.2.2 (Multinomial Theorem: For any x = (x1,x2,...x,) € R" and any positive integer k,

k!
(X1 +x2+x... 4 x,)" = Z —x%.

la|=k
Proof. The case of n = 2 is just the binomial theorem:
k k! _ , B k' o a k'
x1+X2 Z —alJ;%:kal!az, 142 —WZ:kax )

where we set & = j, o =k — j. The general case now follows by induction. Suppose the result is true for
—1,1i,e,. for x = (x1,.....x,—1 ). Then for x = (x1,....x;, ), we obtain

(x14 ... —|—xn)k =((x1 +x2... +xn-1) —|—xN)k

k!
Z H(xl—l— A X)X
i+ j=k Ly

k! i!

e —(xl)ﬁxf,a
itk ! \ﬁ\:iﬁ!
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where § = (B1,...., By_1) and X' = (x1,....,x,_1). To conclude, set @ = (B, ....., Bu_1,/). Then B!j! = ot!
and x'x;, = x%. By noting that & runs over all multi-indices of order k when 8 runs over all multi-indices of
order i =k — j and j runs from O to k, we obtain }4—¢ k'%

Using similar argument, one can obtain the product rule for higher order partial derivatives:

D¥(fo)= ¥ -2 (0P f)(DYg).

ﬁﬂcaﬁ!y!

2.2.2 System of ODE

Here we prove the Cauchy Kovalevski theorem for a system of ODE’s

Definition 2.2.1 Let f,F be realvalued functions with domain in R" of class C* in a neighbourhood of the
origin. We say f is majorised (in symbols f << F), if

|D*£(0)| < D*F(0) for all multi index «.

Theorem 2.2.3 Let f : (—a,a)? — RY is real analytic and u(t) is the unique solution of the ODE

Then u is real analytic near 0.

Lemma 2.2.1 £ is real analytic near 0 € (—a,a)?. Then

for some C,r.

Proof. By definition, there exists p > 0 such that

h(Z) = Zhaza

1
for |z| < p where hy = a&“h(O).
Letz=r(1,1,...,1) with r< p, we get
|ha|r* < €Vt

ie.,

|he| < Cr 1]

al! .
< C|a—|' rlol (Exercise)

and
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31
chr—la\zazci Z Oc_|!(z>06
=~ a!

- (=
n=0|a|=n QA

oo n
:CZ <Zl+zz+...+Zd>

n=0 r
Cr
r—21 —...— 24

This completes the proof of the Lemma (2.2.1). O
Proof of the Theorem (2.2.3) Following the arguments as in scalar case,

Cr
(2) << gilz) i= ———— ., Vj
1) 8i@) Fr—z21—..—24 /
Let v(¢) be the solution of ODE
Cr
'(t) = t) = ——(1,1,...,1 0)=0.
VE) = g0(0) = 7o (11 1), (0)

By symmetry v (7) = vo(¢) = ... = v4(¢). Therefore,

Cr
4(0) = =g v(0)

vl(t)zg(p,/l—zccz;).

Therefore, v(t) = vi(¢)(1,1,...,1) is convergent for |¢| < 57;. Now suppose, u is real analytic solution of
the given problem, then we see that

0.

Therefore,

Wl = ; Oif(ud; = ; i fj(u) fi(w).

Similarly, one can see that

006) = pu ({0500 Yy ens 1 () becmaciza)

and
14 (0)] < pu (ID%£;(1)} <)

2.3 Cauchy Kovalevski Theorem for PDE

Example 2.5. The Cauchy problem

Cr
(b 1 =
r_y_aw( wy—+1), w(0,y) =0

Wy =
has unique real analytic solution.

Solution: Let g(y,z) = r_fiaz. Then
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dx
0 0
dr  x(0,5) =
dy
—=-=b 0,5)=0
dt g(3,2), (0,s)
dz
— = 0,s) =0.
5 = 8W:2), 2(0.5)
Now noting that dt L+ b = 0. Integrating first two equations we get y + bz = s,x(t,s) = t. Therefore
integrating third equatlon,
dz Cr Cr
dt gls—bz.2) r—s—+bz—az r—s—|—(b—a)z’z( 9)
Integrating this equation,
ot
Cri— / [r— s+ (b—a)z(7)]Z(t)dt
0
1
=(r—s)z+ E(b a)z?
1
=(r—y+bz)z+ E(b a)z?
1
=(r=y)z—3(b-a)
Therefore,
20) = ——[(r—y) —\/(r—3)> —2(a+ b)Cr]
(a+b)

A(6) = (gl /(=3P = 2fa+b)Cnd

Example 2.6. The problem
V('xvy) = (vlavza "'7vm)(x5yla"'7y}’l)

= a1+ Y Y '], v(0.y) =0
Feyi— o —ya— Yy VE EIEE
k=1

has real anlytic solution.

Solution: By symmetry, v/ = v! = w(x,z), z=y1 +y2 + ... + Y.

C
Wy = —r[mnwz—i— 1], w(0,z) = 0.
r—z—mw

By above problem, a = m,b = mn,

1

m(”—+1)[(r_1) — \/(r—z)2 —2m(n+1)Crx].

w(x,z) =

Hence
v(x,y) =w(x,y1,¥2, -, ¥n)(1,1,..., 1) € R™
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2.3.1 First order PDE(Scalar case)

Consider the Cauchy problem

du N ou
ox, [ Ox

u(x',0) =0, X' = (x1,...,X,_1)

Ay (u)+ B(u)

Ay (u) is real analytic at u = 0.

W) =Y D4,(0)'

C
By analogous estimates in ODE, we can majorize Ay by g(u) := p—p, where C is such that
—u

1
E|DO‘A/<(0)|POC <C.
Then we can try to find solution of

v " lav Cp_
8x,,_p—vkz’ axk

u(x/70) =0.

33

This can be solved by method of characteristic to obtain real analytic solution. We can also take the coeffi-

cients Ay, that depend on x'. That is

du " du
o, Za X% k(X122 e X 15 1) + B(X1, X2, 00,201, 1)

u(x1,x2,...,%,—1,0) = 0.

In this case the majorant problem would be

du Cp =l u n Cp

ax,, P—XI =X — . =Xy 1 V[T Ox p—XI—X2— =Xy Y

u(x1,x2, ..., %,-1,0) =0

2.3.2 Highert order PDE

Consider the problem:

Z ag(DX uy o u, x)D%u 4 ag (DX u, . u,x) =0, x| < r
|| =k

du k1
dx, = oxk!

u= =0, |¥|<rx,=0

Find r > 0 such that the above problem admits real analytic solution u(x).
Using the transformation
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du du du
U=Ul,— = Uy, —— = U3, ..., —— = Uy ]
7ax1 7ax2 ) 7aXn n+
d%u

L — U
0x10x3 i

CallU = (uy,up,y ..., Upt1,Un+2, ...)T, the above problem can be transformed into a system of the form
n—1
U, = Z Bj(U,x’)ij +c(U,x') for x| < r
j=1
U =0 for |¥|<randx, =0

where B; : R™ x R — Musm, (= 1,2,...,n—1), B = (bl;l)k,l and ¢ : R" x R*1 5 R™, ¢ =
(ch,c2,....c™).

Here note that B is independent of x,,. x, may be assigned u,,+ if B depends on it. The component equation
reads,

]; U,x') u —|—c (U, X)), k=1,2,....m.

HM:

Theorem 2.3.1 Cauchy Kovalevski Theorem: Assume that {B; ;’;f
Then there exist r > 0 and a real analytic function U = Y, Ugx®, a solution of the above problem.

and c are real analytic functions.

(02
Proof. As we noticed earlier, we must compute the coefficients Uy = %!(0), in terms of {B; }’;;f and c.

Since b’;l and ¥ are analytic, we have

Mr
bl << = bl
F—X1 —X2—o. — Xp—1 — U] —.c. — Uy
Mr —
<< = ck
F—X1 —X2—o. — Xp—1 — U] — ... — Uy

Then the equation of majorant is

n—1 m
Cr
1+ uy for |x| < r
( ,ZUZ )r—x1+x2+ ) R T R

u* =0 for [x¥'| <randx, =0

By symmetry u*! = u*? = ... = ™. Therefore u* = v(1,1,...,1). So by taking s = x — 1 +x + ... + x,_1,
we see that v satisfies
Mr
Vx, = m(l —|—m(n— I)VS,V(S,O) =0.

This can be solved by the method of characteristics to find

N VR B 12
v mn(r s) —[(r—s)° —2mnCrx,]

This is analytic for |x| < r, r small.
Claim: 0 < [u¥,| < uiF for all a.
By earlier observations, we can find that

Uy = q]fx (qu,vﬁa Cv.8, “ﬁ)
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q’fx is a polynomial.

k k
|uoc| = |Qa(~~-7Bj7v78(”)ucv,5(”)7”ﬁ)|
k x *
< Qa(---ij,v,S("‘ )aCV,E(u*)auﬁ)
Hence the claim and the proof of the theorem. O
As we mentioned earlier, this theorem only guarantees the existence and uniqueness, but not well-

posedness. The following problem explains this:
Example 2.7. Consider the Cauchy problem:

sinkx

k

Uy + 1ty =0, u(x,0) =0,u,(x,0) =
It is easy to see the solution is
1
u(x,y) = 2 sinkxsinh(ky)

Now notice that the Cauchy data converges uniformly to 0 as kK — 0, but the solution does not converge to
0 at any y # 0.

Example 2.8. Consider the parabolic equation

1
—,1>0,xeR.
X

U = yy, u(x,0)= -

It is easy to see that = 0 is a characteristic line as A = 1,B = 0,C = 0. If we write the solution in the form

"
u(t,x) = Zam,n%m

Then substituting in the PDE, we get

Am+-1,n = Qmn+2
x"
u(x,0) = Zao)nﬁ =142 +x 4

aogon—1 =0, ago, = (2n)!

hence we get

A on = A0 pnt2m = [2(n+m)]!

Therefore,
Amon 2(n+m)]!

m!(2n)!  m!(2n)!

Taking n = m we see
amﬁzn -~ (411)4”
m!(2n)!  n"(2n)%n

It is not difficult to show that the radius of convergence is zero.
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2.3.3 Holmgren Uniqueness theorem

In the C-K theorem, we proved the existence of unique real analytic solution for Cauchy problem in
with real analytic data. Then one asks the question wheather the problem has another solution which is
differentiable of the order of the equation. This is answered by the Holmgren uniqueness theorem. This
theorem says that for Linear problem with real analytic data, there does not exist another C" solution.
The surprising thing is it is the C-K theorem which is used to prove the Holmgrent uniqueness theorem.

Consider the Cauchy problem for linear differential operator with data on the initial curve y

(P): ZLu= Y au(x)D*u=0, D*u=0onyfor|o| <m—1.

lot|<m

The main idea of the proof is to show that the adjoint problem has real analytic solution. This existence
implies the uniqueness of solution to the given problem. This is popularly known as “Existence implies
uniqueness”. To move forward, let us define the adjoint .Z” of the operator .Z as

Zv=Y (~1)I*D*(ag(x)v).

o[ <m

Then one can easily see by integration by parts,
(Lu,v) = / Luv= / u i”tv—}—/ aq(x)D%u D*vdo = (u,.#'v) + Boundary terms,
Q Q 2Q

The boundary terms will be zero if D%« = 0 or D%v = 0 on d. So if we choose u,v € C" () such that

either D% = 0 or D%y = 0 on d£2, then we have
(Lu,v) = (u, Z"v)

The main motivation comes from the adjoint operators on normed linear spaces. Let X,Y be normed linear

spaces and let X', Y’ are the normed duals. Let £ : X — Y be a continuous map.

Definition 2.3.1 The adjoint of £ is defined as ' :Y' — X' by
(LY x) =, Lx) forally €Y' andx € X.

Theorem 2.3.2 If the range of " is dense in X', then ker(£) = {0}
Proof. Let Zu=0. Then

0={"\Lu) = (LY ,u)
ie. (£, u)y =0forall y €Y. Since .#" has dense range it implies that
(X,u)y=0VvxeX

By Hahn Banach theorem it follows that u = 0.

Now construct ¥ so that ¥ and ¥ are non-characteristic curves for the problem (P). Let 2 be the domain

bounded by curves y and ¥ and the boundary Q2 = yUY'. We may consider the operator X = C™(Q) and
Y = C() with metrics by
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dn(u,v) =Y /QDO‘MDO‘de7 d(u,v):/guvdx.

lot|<m
and the operator .2 : C"() — C(Q). Then for u,v € C"(Q) satisfying
D%u=0 ony and D*v=0 on Y, forall |a| <m—1,

we have (Zu-v) = (£"v-u). Therefore, by above Theorem, if the range of .#" is dense in C(Q), then
Zu = 0implies u = 0. That is, we need the existence of solution for following adjoint problem

(Qg): L'v=g, D*v=0onY, for|o|] <m—1

for all g in a dense subset of C(£2). By Weierstrass approximation theorem, we can choose a sequence {g, }
of polynomials that converges to g in C(). So it is enough to show the problem in (Q,) has solution for
all polynomials g and the domain of existence of solution does not depend on g. Since polynomils are real
analytic in the whole space and since .Z is linear operator, by Cauchy-Kowalevski theorem, this problem
has unique real analytic solution in a neighborhood around . The size of the neighbourhood does not
depend on g (exercise). But it depends on the coefficients of .Z.

In more simple terms, if u is a solution of (P) and let v, is a solution of (Q), ). Then
0= (Lu,vn) = (u, L vu) = (u, gn).

If we choose g, such that g, is polynomial and g, — u uniformly in C(), we have

Oz/ug”—>/u2 = u=0.

Now we demostrate these constructions for Cauchy problem: Consider the Cauchy problem on y = {x =
(x1,...,%4) € R?: x; = 0}, the non-characteristic initial curve and let xo = (0, ...,0). Introduce the new

coordinates (¢,yy,...,yq), where
_ 2 2 _ _ _
I=X1+xX3+-+Xg, Y2 = X2, Y3 = X3,...,Yd = Xg-

Then, y = {t = |y|*}. With respect to this new coordinates, ¥ is non-characteristic for the Cauchy problem
of the operator Zu =Y aq(t,y)D%u, and assume that there exists r; such that the coefficients ay/(z,y) are
real analytic in B,, = {(t,y) : |t|+ |y| < ri}. So, choose & such that

we, = P <t <&} €B,.
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exists constant C such that

t 2 < Cp%, fl+ bl <p <n.

The coefficients by, of the adjoint operator are also analytic and so we may assume that

a2l < Cp%, i+l <p<n.

For each € € [0, &), we consider the Cauchy problem of adjoint
L'v=gu(t,y), t€(0,e), D*»=0 on{r=¢}|a|<m—1,

where g, is a polynomial. By Cauchy-Kowalevski theorem, there exists a neighborhood around (¢,0),
€ < & with uniform radius of convergence p as g, is polynomial. Therefore, there exists solution in {(z,y) :
|t — €|+ |y| < p} for each € € [0, &).

Now it is easy to see that there exists &; such that we, C {|t —&;|+ |y| < p}. Therefore, £ has dense range
on C™ (W, ). By adopting this at each non-characteristic point xo on y we obtain that » = 0 on one side of
7. The argument for the other side is identical.

Reference:

1. Lectures on Cauchy problem by Sigeru Mizohate, TIFR Bombay, 1965.

2. Lecture notes of Gustav Holzegel, Imperial college, London.
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2.3.4 Problems

1. ;xa: in:l <a§0xii> = (1—X1)(1_x2)""(1_'x")
2 P8 Ty e § b =

1= (xg Fxoe - xy)

provided |x; +...|x,| < 1.

a % j=0ja=j % Jj=0
3. Forx,yeR" a e N",  (x+3)* =Yg 184+7-a b,“!—}!,!xﬁyy
1
4. Taylor expansion: f(x) = ) E(D“ F(0))x*.
lot|<m =

5. Solve the Cauchy problem u; = %us, u(s,0) =s.
6. In the linear case, the Cachy problem

du du
a—y—A(x7y)$+B(x7y)u+c(x)
can be majorized by
@_r—Z M@+M +
Iy iy \Max TR

for suitable constants r,M, 1. Solve this problem with Cauchy data u(x,0) = 0. Show that the region in
which solution exists is independent of .

7. Show that u(x,t) = (47rt)’1/2e’x2/4’ is a smooth solution of equation u; = uy, for t > 0,x € R. Extend
u by zero for t < 0. Does this contradict the Holmgren uniqueness theorem?.

8. Consider the Cauchy problem u;; = uy,,t > 0,x € R, u(x,0) = 0. Does Holmgren uniqueness theorem
imply that u = 0.



