Chapter 6
Wave Equation

In this section we will study the wave equation
Uy —Au=0,1>0, xcR".

First we will try to find a solution of the Cauchy problem in one dimension. This models the position of
vibrating string. Firstly, we try to solve the problem with given Cauchy data f(x),g(x) :

Uy — e =0, xR, >0
u(x,0) = f(x), u(x,0) =g(x), xeR.

The characteristics of the equation are
X+ct=cy, x—ct =0
where c1,c; are constants. Now taking the transformation
N=x—ct, &E=x+ct

we get the following

-1 1 1 1
up = Zut—i— Eux, ug = 2—Cut—|— Eux

i o
”511_4 —Czu"—i—uxx =0.

Therefore,
u(n,&) =F(&)+G(n) =F(x+ct)+G(x—ct)

for some functions F' and G. To find these functions we use the initial conditions
f(x) =u(x,0) = F(x) + G(x), g(x) = u;(x,0) = c(F'(x) — G'(x))

solving these two equations, we get

1 X+ct
(FOc+er) + flr—er)+ 5 / 2(s)ds)

C Jx—ct

| —

u(x,t) =

This is known as D’Alembert’s formula. In case of non-homogeneous equation
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100 6 Wave Equation

gy — 621ty = h(x,1)
with the transformation (x,¢) — (1, &), we get
2 1
gt =~ (i — ) = — 7 (1, €)
Therefore,
u(@n) = [ [ n.)dgdn+F(&)+6(n)

where F' and G are evaluated using the Cauchy data.

Example 6.1. solve the problem
Uy — gy = cost,u(x,0) = 0,u,(x,0) =0, x e R, 1 > 0.

In the variables 1 and &

Therefore,

(&) = [ [ HnE)azan-+F(E)+ 6(m) = —cos (ST ) +F(E)+Gn) = —cost-+ F(E) +Gin)

Now substituting the initial conditions u(x,0) = 0, u,(x,0) = 0, we get
F+G=0,F -¢g =0
This implies F = % +kG= % — k for some constant k. Substituting in u(x,?) we get
u(x,t) = 1 —cost.
In case of Initial Boundary value problems on (0,/):

Uy — e =0,1>0,x € (0,1)
M(X,O) :f(x)7 MI(X,O) :g(x)7 B S (Oul)
u(0,¢) =0, u(l,r) =0.

Then in prinicple the solution should satisfy the D’ Alemberts formula. But when ¢, time is large enough,
x4+ ct and x — ct are not in the interval (0,/). So for this formula to be valid, we need to extend the functions
f(x) and g(x) to the whole of R.

Let f(x) and g(x) be the extensions of f(x) and g(x) to the whole of R. Similarly, F and G be extension of
F and G to R. Then from the boundary conditions, we get
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Thereofe f(ct) = —f(—ct) and [, g(s)ds = 0. This implies that the extended function is an odd function.
Also, from the other boundary condition we get,

1 [+ct
0=u(lyr) = 3 [Fl+e)+FU—c)] + 5 /l 2(s)ds

—ct

N =

This implies that
fll+ct)=—f(l—ct)=f(~1+ct)

where we used that f is odd for last equality. Similarly for g. Therefore f and g are odd periodic exten-
sions of period 2/.

Parallologram property: The solution of the wave equation satisfies parallelogram property. Let
u(n,&) = F(&) +G(n) is the general solution. Suppose ABCD is a rectangle in the n&—plane having

sides parallel to the coordinate axes with coordinates:

:(€+5§7n)732(€7n)7 C:(57n+5n)7D:(€+5§7n+5n)

Then F is constant along CD and AB. G is constant along BC and AD. Then

u(A) =F(&+68)+G(n)

u(B) =F(&)+G(n)

u(C) =F(§)+G(n+ém)

u(D) =F(&+68,n)+G(n+6n)

Therefore,
u(B)+u(D) =u(A)+u(C)

This rectanle is transformed into a parallelogram in the xt-plane with sides paralle to the characteristic
lines x = ¢t and x = —ct. This is known as the parallelogram property satisfied by the wave equation. This

motivates one to define the weak solution.

Definition 6.0.1 Any function u(x,t) (need not be even continuous) satisfying the parallelogram property

is called weak solution.

Example 6.2. Solve the following initial boundary value problem using D’ Alemberts formula:

Uy — e =0,1>0,x € (0,L)
u(x,0) =x,u,(x,0) =0, x€ (0,L)
u(0,t) = a(t), u(L,t) =0,1>0.

In the region (),
1 1
u(x,t) = > (fx+cet)+ flx—ct)) = E(x—l—ct—i—x—ct) =
In the region (II), we use the parallelogram property,

u(A) = —u(C) +u(B) +u(D)
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Let A = (xo,%). Then the line AD: x —xo = (—1)(¢ — o) and this line intersects x =t at7 = x"Tﬂo There-
: Xotfo Xott
fore the point D = (=3¢, %0572).
The line AB: x —xo = ¢ — fy. This line intersects x = 0 at the point B. Therefore B = (0,7) — xo).
The line BC: x = (—1)(r — 1) +x0) and this intersects the line x = at C. Therefore the point C =
(f5% 0%0) The point B = (0,7 — xo). Therefore,

u(B) = OC([() —)C()), u(D) = (t() —)C()).

| —

(xo+10), u(C) =

| —

Hence,
M(A) = M(X(),t()) =xp+ Ot(t() —XQ).

Propagation of jump discontinuities: Consider the second order equation
Aty ~+ 2butyy + cuyy = 0.

Suppose u is a solution and the second order partial derivatives have discontinuous along x = ¢(y) and

x=¢)
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the jump in the first order derivatives is zero. Let u/ be the solution in the region that is left of the curve

x = ¢(y) and '’ be the solution in the region that is right of the curve x = ¢(y). Then

0= 75wl = 7 (48 0).) —w(0().7)
=l (v) +ull — il g’ —ull
= 'l — u) + () — )
= ¢ [uea] + [ty
Similarly,
diy ] = 0= ¢ [uy] + [ty

From the given differential equation we get
afuxe] + 2b [ury] + ¢ [uyy] = 0.

Now assuming jump in uy, and u,, are same and let A = [u,|. Then from the equations we get
[y = 29", [g] = 2(9)*.

Therefore,

ak —2bA¢' +cA(¢')*> =0.
If A # 0, then ¢ satisfies
a—2b¢" +c(¢)* =0.
which implies the ¢ (y) is a characteristic curve. Therefore we say the discontinuities propagate along the

characteristic curves. Now differentiating the equation A = [u,,] and 29’ + [u,,] = 0 with respect to y, we
get

dA
dy
—(O'R) =[thrny] 9" + [t42y]

= [“xxx] ¢/ + [uxxy]

Differentiating the given differential equation with respect to x, we get
aftte] + 2b[threy] + c[uayy] = 0.
Eliminating [txyy|, [txry] and [uyy,y] from the above 3 equations, we get the first order equation in 4
21 (b—c¢') —Acop” =0

So if A is not zero at a point then A is never zero.

Example 6.3. Find the weak solution of the following problem: For x € R,# > 0, consider the Cauchy
problem
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1 x<1
Uy — 4y =0, u(x,0) = 0,u,(x,0) =
x x>1.
By D’Alembert’s formula,
1 x+2t
u(x,t) = —/ g(s)ds
4 x—2t
t
x-2t=1
x+2t=q~
11
I 1l
X
g (1,0)

In the regioin (1):
For (x,7) € I, we have x+ 2t < 1,¢ > 0. Therefore,

1 xt+2t
u(x,t) = 1) lds =1.

In the regioin (I1):
For (x,t) € 11, we have x — 2t > 1,¢ > 0. Therefore,

1 x+2t

= - sds = xt.
4 x—2t

u(x,t)

In the regioin (/11):
For (x,t) € 111, we have x — 2t < 1,x+ 2t > 1,¢ > 0. Therefore,

1 1 X+21 1
u(xJ):Z(/ 1ds+/ sds) :Z(x—i—Zt—l).
x—2t 1

Theorem 6.0.1 Uniqueness: The IBVP:

Ut — ity = h(x,1), £ > 0,x € (0,L)
M(X,O) :f(x)a ut(xao) :g(x)a X € (OaL)
u(0,t) =a(t),u(L,t) =b(t),t > 0.

has at most one solution.

Proof. Let u; and up be two solutions, then w(x,#) = u; (x,t) — ua(x,t) satisfies the problem
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Wi —wee =0, 1>0,x € (0,L)
w(x,0) =0, w;(x,0) =0, x € (0,L)
w(0,t) =0, w(L,1) =0,1>0.

Consider the function
2 / wt +c2 w

L
(wewye + czwxth)dx

Then
E'(r) =

S—

2 2( 0 2.0
Also c*wywy = ¢ (E(wxwt) — wxxwt) = ¢ 5-(wyw;) — wyw;. Therefore,

L 0
E'(t) = A Cza(wxwt)dx = czwxw,}% —=0.

Here we used w(0,¢) = 0,w,(L,#) = 0. This implies E(z) is constant. But £(0) = 0. Hence E(¢) = 0. That
is
wt + c2w2 =0.

Therefore wy (x,1) = 0,wy(x,f) = 0. Hence w(x,7) is constant. Finally using w(x,0) = 0 we get w(x,#) = 0.

6.0.1 Higher dimensions

Let h(x) be a continuous function on R”, let

L
My(x,r) = w—”/‘é‘:lh(x+r§)d5(§

be the spherical mean of 4(x) on a sphere of radius r and center x. Here w,, is the surface area of unit sphere
§" 1 and dS¢ denotes the surface measure. Since /(x) is a continuous function, My (x, ) is continuous in x

and r. Taking limit » — 0, we get Mj(x,0) = h(x). Moreover if i € CK(R") then M, (x,r) € CK(R" x R").
Differentiaing M), with respect to r partially, we get

d 1 &
EM},(X,V) = W_n Zl/‘g‘ZIhxlgdS;’:

Integrating by parts on |&| < 1 (unit exterior normal 7 = &), we get

0
E’Mh( Wn /§\<1 aél x,( +r€)) 5

i=

1 n
- X /m g (x4 rE)rd
= —A h(x+r&)dé

Wn 1€1<1

Now by the change of variable &’ = r&, we get d&' = r"d& and
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1 ! !
/‘5‘<1h<x+r5>d5 - /‘5,‘<rh(x+€ dE

rﬂ

1

wy [T
=7/ p" My (x,p)dp
r-Jo

Therefore,
a 1 g n—1
SM(r) = A, [ p" My p)dp

Differentiating with respect to » implies

a -1 a _ —1
5 (r" E’Mh(L r)> =AM, (x,r)r"

That is equivalent to

2 n—-120
(W + TE’) My(x,r) = AMy(x,r).

This is called Darboux equation.

Cauchy problem in n-dimensions:
Now consider the problem

Uy =c*Au, xeR", 1 >0
M(X,O) :g(x)v “t(xvo) = h(x)v X e R".

From the above discussion, we see that

0?2 | .
ﬁMu(x,r,t) = W_n/\g\:l g (x+ 1€, 1)dSyi
1 2
= — c“Au(x+r§,t)dSyi
wn D (x+7r&,t)

=AM, (x,1,1)

Thereofre from the above Darboux equation, we get

8_2M( f) = a_2+”__1i My (x,r,1)
g2 = A 92 roor ) eeh

This is called Euler-Poisson-Darboux equation. The initial conditions become

iM,,(x7 nt) = Mp(x,r).

M, (x,7,0) = My(x,r), P

_ LT h dSed
o)y P /‘5‘:1 (x+p&)dSedp

6 Wave Equation

(0.1)

We can solve this Cauchy problem in the varibles ¢ and r to obtain M, (x,r,¢) and u(x,t) may be obtained

as limit
u(x,t) =limM,(x,rt).
r—0

Wave equation in R3
From the equation (0.1) with n = 3, we obtain
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82 c2 92

3 Mux,nt) = — =5 (rMu(x,1,1)) (0.2)

Ateach x, let V*(r,t) = rM,(x,r,t). Then V* satisfies the IBVP:

9? J?

2
ﬁvx(r,t) =c va(r,t), r>0,t>0 (0.3)
V¥(r,0) =rM,(x,7), V;*(1,0) = rMy(x,r) (0.4)
V*(0,t) = im rM,,(x,r,t) = O.u(x,t) = 0. 0.5)
r—0

Also by defining G*(r) = rM,(x,r) and H*(r) = rMj,(x,r) we see that G and H satisfies the compatibility
condition G*(0) = H*(0).
Therefore by D’ Alembert’s formula, G* and H* may be extended as odd functions to negative values of

r to write the solution as

1 1 r+ct
V¥(nt) == (G*(r+ct)+ G (r—ct))+ — H(p)dp.
2 2¢ Jr—ct
Since G* and H* are odd functions of r, we have G*(r — c¢t) = —G(ct — r) and
r+ct ct+r ct+r ct+r
> H(p)dp =/7( . p)dp = / o« dp+ B H(p)dp =0+ H(p)dp
Therefore,

1 1 1 r+ct
Mu(e,rt) = ~V¥(51) = 5 (G +e1) + Gt =) + —/c H(p)dp

Ccr Jet—r
That is,
1 1 r+ct
M) = o ((r Mt +7) — (et = Mt =)+ 5. [ pM(xp)dp
ct—r

Taking limt r — 0, we get

1
r=ct T E (CIMh ()C7Cl))

u(x,r) = %(TMg(xu 7))

0
= = (tMy(x,c1)

4171; gt (t /5‘ X (x+ct€)dS§) yye /\5\— h(x+ct&)dSe

10 t
_1a dss | + - / h(E)dS;.
47 ot (t/g(x’ct)g(g) 5) + 4T JB(xcr) ($)dS;

This is known as Kichhoff’s formula.

et + 1 (ctMp(x,ct))

Remark 6.0.1 [. The domain of dependence is the sphere of radius ct around x. That is, the surface of
the sphere {x +ct& : |E| = 1} in R3. Similarly, the range of influence of a point xo € R is the set of
points on the cone {(x,t) : |x —xo| = ct}. This phenomena is called presence of sharp signals. That
is, A large initial disturbance near x| will be felt at time t = bl " and not after that time. For example

sound or light waves.
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2. The loss of regularity: The formula above implies that g € C3,h € C%. Then u € C?. That is if the
initial data is of C**', then solution is C*. So there is a loss of regularity. This occurs only in higher

dimensions and not in one dimension.

Wave equation in R?

This method is also known as Hadamard method of descent. In this case it is not possible to write the
equation (0.2). So, in this case we regard R? as R with x3 = 0. Therefore we need to convert the surface
integrals in R? to domain integrals in R?. Let u(x,x,,¢) be the required solution. Then define

u(x1,x2,x3,1) = u(xy,x2,1).
Then the Cauchy problem becomes

Ty — A= 01in R3 x (0,00) (0.6)
=3, % =honR®x {r=0} 0.7)

where g(x1,x2,x3) = g(x1,X2), h(x1,%2,x3) = h(x1,X2). Denoting X = (x1,x2,0) € R3 for x € R?. Then the
solution of (0.6) -(0.7) is

—f— P a ods hds
ul,r) =u(x,1) = = (l agtngds) H/BEW) s

where B(X,t) is the ball in R* with center X and radius > 0 and ds denotes the two dimensional surface
measure on dB(X,t). To simplify further, we note that dB(X,t) = {y: |y —%| =t} = {(y1 —x1)*+ (v2 —
x)?+y3 =1*}. Now

1 2
‘d‘:—/ ‘d‘:—/ 1+ DY) 2d
agfm)g 5= 2 Jopen S T am B(mg(y)( [Dy(y)|)/“dy

where y(y) = (£ — |y —x|*)!/? for y € B(x,). The factor 2 is because the sphere has upper and lower
hemispheres. also
(1 + |D’)/|2)1/2 —¢ (t2 _ |y _x|2)*1/2.

Therefore,
1 g(y)
d :—/ — % __d
353(;,)5' T2 Jyen =y =222
t g(y)
== f —==——d
2 sl @y AP
Hence
10 (, g(y) t* h(y)
HN=—— |1t — — —d 0.8
o) 29t< e s ekl I O Y e e A ©8)

Remark 6.0.2 . From the formula (0.8) it is clear that the range of influence is the interior of the cone
{(x,1) : |x —x0| < ct}. Also the domain of dependence is the interior of disc {x+ ct&,|E| < 1}. So the

Ixt
-

Pt
c

disturbance at x| is felt after the time t = . This is also called

and it persists for all times t >
absence of sharp signals. For example drop a stone in the water at x. The waves will be moving and is

felt at a point x| at time t and later.
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2. Loss of regularity: The formula (0.8) implies that if g € C*T1 h € CX, then u € C¥. That is there is a

loss of regularity.

6.0.2 Non-homogeneous Problems: (Duhamel’s Principle)

In this section we will see closed form solution like D’alemberts type for non-homogeneous wave equa-
tion:

u,,fczAu:f(x,t)7xeR”,t>O 0.9)
u(x,0) =0, u(x,0) =0, x e R". (0.10)

Recall the Duhamel’s principle for system of ODE’s
X'+AX =F(t), X(0) =X

Then .
X (1) = Xoe + / e A (5)ds
0

If we define S(¢) as solution operator in the sense that Xo — S(¢)Xo satisfies
X' +AX =0, X(0) =X
and the above formula is actually written as
X(x) = Xoe + /0 'St — $)F(s)ds

So if we can define S(¢) for wave equation then we can write a candidate for solution. The above wave
equation may be written as the system:

U =,

Vi = Uy = czAu—I—f(xJ)
This may be written as first order system with U = (u,v)”

U,+AU =F, U(0) = (0,0)”

whereA:<20 1) andF:< 0 )
A0 fx,z)

So the solution of this problem is
t
U(t,x) = / S(t — 5)F (5,x)ds
0

where S(t) is the solution operator of homogeneous system in the sense that for @ = (¢, y)?, V(t,x) =
S(r)P satisfies
Vi+AV =0, V(0) =

and U (t,s,x) = S(t — s)F (x,s) is a solution of
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U +AU =0, U(t,t,s) = F(x,s)on {t = s}
Uy 01 u
)+ (0] () -0
(:) = (f(f(f), S)) on {t =s}

So it is equivalent to solve the initial value problem

That is

and the initial condition

Uy —Au=0,xcR" 1t >s
u(x,0) =0, u(x,5) = f(x,5), x e R", {t = s}.

In dimension n = 1 this is given by the D’ Alemberts formula

1 pxte(t—s)
u(x,,s) = / f(ys)dy

% —c(t—s)

Hence the candidate for solution of non-homogenous equation is

t 1 t rxtc(t—s)
utet) = [Cutersas=o [ [ o s dvas

Using the fundamental theorem, one can show the following theorem:

6 Wave Equation

.11)
(0.12)

(0.13)

Theorem 6.0.2 IfU(x,t,s) is C? in x and t, continuous in s, and solves the problem (0.11)-(0.12), then

u(x,t) = /OIU(x,t,s)ds

solve the problem (0.9)-(0.10).

6.0.3 problems

1. Show that if u(x,r) satisfies parallologram property and is sufficiently smooth then u(x,7) is a classical

solution of the wave equation.
2. Show that (0.13) satisfies the non-homogeneous problem (0.9)-(0.10).



