Chapter 6

Wave Equation

In this section we will study the wave equation

$$u_{tt} - c^2 \Delta u = 0, \ t > 0, \ x \in \mathbb{R}^n.$$

First we will try to find a solution of the Cauchy problem in one dimension. This models the position of vibrating string. Firstly, we try to solve the problem with given Cauchy data f(x), g(x):

$$u_{tt} - c^2 u_{xx} = 0, x \in \mathbb{R}, t > 0$$

 $u(x,0) = f(x), u_t(x,0) = g(x), x \in \mathbb{R}.$

The characteristics of the equation are

$$x + ct = c_1, x - ct = c_2$$

where c_1, c_2 are constants. Now taking the transformation

$$\eta = x - ct, \; \xi = x + ct$$

we get the following

$$u_{\eta} = \frac{-1}{2c}u_{t} + \frac{1}{2}u_{x}, \quad u_{\xi} = \frac{1}{2c}u_{t} + \frac{1}{2}u_{x}$$
$$u_{\xi\eta} = \frac{1}{4}\left(-\frac{1}{c^{2}}u_{tt} + u_{xx}\right) = 0.$$

Therefore.

$$u(\eta, \xi) = F(\xi) + G(\eta) = F(x+ct) + G(x-ct)$$

for some functions F and G. To find these functions we use the initial conditions

$$f(x) = u(x,0) = F(x) + G(x), g(x) = u_t(x,0) = c(F'(x) - G'(x))$$

solving these two equations, we get

$$u(x,t) = \frac{1}{2}(f(x+ct) + f(x-ct) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s)ds)$$

This is known as D'Alembert's formula. In case of non-homogeneous equation

$$u_{tt} - c62u_{xx} = h(x,t)$$

with the transformation $(x,t) \mapsto (\eta,\xi)$, we get

$$u_{\eta\xi} = -\frac{1}{4c^2}(u_{tt} - c^2 u_{xx}) = -\frac{1}{4c^2}h(\eta, \xi)$$

Therefore,

$$u(\xi,\eta) = \int \int h(\eta,\xi)d\xi d\eta + F(\xi) + G(\eta)$$

where F and G are evaluated using the Cauchy data.

Example 6.1. solve the problem

$$u_{tt} - c^2 u_{xx} = \cos t, u(x, 0) = 0, u_t(x, 0) = 0, x \in \mathbb{R}, t > 0.$$

In the variables η and ξ

$$u_{\eta\xi} = -\frac{1}{4c^2}h(\eta,\xi) = -\frac{1}{4c^2}\cos\left(\frac{\xi-\eta}{2c}\right), t = \frac{\xi-\eta}{2c}$$

Therefore,

$$u(\xi,\eta) = \int \int h(\eta,\xi)d\xi d\eta + F(\xi) + G(\eta) = -\cos\left(\frac{\xi-\eta}{2c}\right) + F(\xi) + G(\eta) = -\cos t + F(\xi) + G(\eta)$$

Now substituting the initial conditions u(x,0) = 0, $u_t(x,0) = 0$, we get

$$F + G = 0, F' - g' = 0$$

This implies $F = \frac{1}{2} + k$, $G = \frac{1}{2} - k$ for some constant k. Substituting in u(x,t) we get

$$u(x,t) = 1 - \cos t$$
.

In case of Initial Boundary value problems on (0, l):

$$u_{tt} - c^2 u_{xx} = 0, \ t > 0, x \in (0, l)$$

$$u(x, 0) = f(x), u_t(x, 0) = g(x), \ x \in (0, l)$$

$$u(0, t) = 0, u(l, t) = 0.$$

Then in prinicple the solution should satisfy the D'Alemberts formula. But when t, time is large enough, x+ct and x-ct are not in the interval (0,l). So for this formula to be valid, we need to extend the functions f(x) and g(x) to the whole of \mathbb{R} .

Let $\overline{f}(x)$ and $\overline{g}(x)$ be the extensions of f(x) and g(x) to the whole of \mathbb{R} . Similarly, \overline{F} and \overline{G} be extension of F and G to \mathbb{R} . Then from the boundary conditions, we get

$$0 = u(0,t) = \overline{F}(ct) + \overline{G}(-ct)$$

$$= \frac{1}{2} \left[\overline{f}(ct) + \overline{f}(-ct) \right] + \frac{1}{2c} \int_0^{ct} \overline{g}(s) ds - \frac{1}{2c} \int_0^{-ct} \overline{g}(s) ds$$

Thereofe $\overline{f}(ct) = -\overline{f}(-ct)$ and $\int_{-ct}^{ct} \overline{g}(s)ds = 0$. This implies that the extended function is an odd function. Also, from the other boundary condition we get,

$$0 = u(l,t) = \frac{1}{2} \left[\overline{f}(l+ct) + \overline{f}(l-ct) \right] + \frac{1}{2c} \int_{l-ct}^{l+ct} \overline{g}(s) ds$$

This implies that

$$\overline{f}(l+ct) = -\overline{f}(l-ct) = \overline{f}(-l+ct)$$

where we used that \overline{f} is odd for last equality. Similarly for \overline{g} . Therefore \overline{f} and \overline{g} are **odd periodic extensions of period** 2l.

Parallologram property: The solution of the wave equation satisfies parallelogram property. Let $u(\eta, \xi) = F(\xi) + G(\eta)$ is the general solution. Suppose ABCD is a rectangle in the $\eta \xi$ -plane having sides parallel to the coordinate axes with coordinates:

$$A = (\xi + \delta \xi, \eta), B = (\xi, \eta), C = (\xi, \eta + \delta \eta), D = (\xi + \delta \xi, \eta + \delta \eta)$$

Then F is constant along CD and AB. G is constant along BC and AD. Then

$$\begin{split} u(A) &= F(\xi + \delta \xi) + G(\eta) \\ u(B) &= F(\xi) + G(\eta) \\ u(C) &= F(\xi) + G(\eta + \delta \eta) \\ u(D) &= F(\xi + \delta \xi, \eta) + G(\eta + \delta \eta) \end{split}$$

Therefore,

$$u(B) + u(D) = u(A) + u(C)$$

This rectanle is transformed into a parallelogram in the xt-plane with sides paralle to the characteristic lines x = ct and x = -ct. This is known as the parallelogram property satisfied by the wave equation. This motivates one to define the weak solution.

Definition 6.0.1 Any function u(x,t) (need not be even continuous) satisfying the parallelogram property is called weak solution.

Example 6.2. Solve the following initial boundary value problem using D'Alemberts formula:

$$u_{tt} - c^2 u_{xx} = 0, \ t > 0, x \in (0, L)$$
$$u(x, 0) = x, u_t(x, 0) = 0, \ x \in (0, L)$$
$$u(0, t) = \alpha(t), u(L, t) = 0, \ t \ge 0.$$

In the region (I),

$$u(x,t) = \frac{1}{2} (f(x+ct) + f(x-ct)) = \frac{1}{2} (x+ct+x-ct) = x.$$

In the region (II), we use the parallelogram property,

$$u(A) = -u(C) + u(B) + u(D)$$

Let $A = (x_0, t_0)$. Then the line AD: $x - x_0 = (-1)(t - t_0)$ and this line intersects x = t at $t = \frac{x_0 + t_0}{2}$. Therefore the point $D = (\frac{x_0 + t_0}{2}, \frac{x_0 + t_0}{2})$.

The line AB: $x - x_0 = t - t_0$. This line intersects x = 0 at the point B. Therefore $B = (0, t_0 - x_0)$.

The line BC: $x = (-1)(t - t_0 + x_0)$ and this intersects the line x = t at C. Therefore the point $C = (\frac{t_0 - x_0}{2}, \frac{t_0 - x_0}{2})$. The point $B = (0, t_0 - x_0)$. Therefore,

$$u(B) = \alpha(t_0 - x_0), \ u(D) = \frac{1}{2}(x_0 + t_0), \ u(C) = \frac{1}{2}(t_0 - x_0).$$

Hence,

$$u(A) = u(x_0, t_0) = x_0 + \alpha(t_0 - x_0).$$

Propagation of jump discontinuities: Consider the second order equation

$$au_{xx} + 2bu_{xy} + cu_{yy} = 0.$$

Suppose u is a solution and the second order partial derivatives have discontinuous along $x = \phi(y)$ and

the jump in the first order derivatives is zero. Let u^I be the solution in the region that is left of the curve $x = \phi(y)$ and u^{II} be the solution in the region that is right of the curve $x = \phi(y)$. Then

$$0 = \frac{d}{dy} [u_x] = \frac{d}{dy} (u_x^I(\phi(y), y) - u_x^I(\phi(y), y))$$

$$= u_{xx}^{II} \phi'(y) + u_{xy}^{II} - u_{xx}^I \phi' - u_{xy}^{II}$$

$$= \phi'(u_{xx}^{II} - u_{xx}^I) + (u_{xy}^{II} - u_{xy}^I)$$

$$= \phi'[u_{xx}] + [u_{xy}].$$

Similarly,

$$\frac{d}{dy}\left[u_{y}\right] = 0 = \phi'\left[u_{yx}\right] + \left[u_{yy}\right]$$

From the given differential equation we get

$$a[u_{xx}] + 2b[u_{xy}] + c[u_{yy}] = 0.$$

Now assuming jump in u_{xy} and u_{yx} are same and let $\lambda = [u_{xx}]$. Then from the equations we get

$$[u_{xy}] = -\lambda \phi', [u_{xy}] = \lambda (\phi')^2.$$

Therefore,

$$a\lambda - 2b\lambda\phi' + c\lambda(\phi')^2 = 0.$$

If $\lambda \neq 0$, then ϕ satisfies

$$a - 2b\phi' + c(\phi')^2 = 0.$$

which implies the $\phi(y)$ is a characteristic curve. Therefore we say the **discontinuities propagate along the characteristic curves.** Now differentiating the equation $\lambda = [u_{xx}]$ and $\lambda \phi' + [u_{xy}] = 0$ with respect to y, we get

$$\frac{d\lambda}{dy} = [u_{xxx}]\phi' + [u_{xxy}]$$
$$-(\phi'\lambda)' = [u_{xxy}]\phi' + [u_{xyy}]$$

Differentiating the given differential equation with respect to x, we get

$$a[u_{xxx}] + 2b[u_{xxy}] + c[u_{xyy}] = 0.$$

Eliminating $[u_{xxx}]$, $[u_{xxy}]$ and $[u_{xyy}]$ from the above 3 equations, we get the first order equation in λ

$$2\lambda'(b-c\phi') - \lambda c\phi'' = 0$$

So if λ is not zero at a point then λ is never zero.

Example 6.3. Find the weak solution of the following problem: For $x \in \mathbb{R}, t > 0$, consider the Cauchy problem

$$u_{tt} - 4u_{xx} = 0, \ u(x,0) = 0, u_t(x,0) = \begin{cases} 1 & x \le 1 \\ x & x > 1. \end{cases}$$

By D'Alembert's formula,

$$u(x,t) = \frac{1}{4} \int_{x-2t}^{x+2t} g(s) ds$$

In the region (I):

For $(x,t) \in I$, we have x + 2t < 1, t > 0. Therefore,

$$u(x,t) = \frac{1}{4} \int_{x-2t}^{x+2t} 1 ds = t.$$

In the region (II):

For $(x,t) \in II$, we have x - 2t > 1, t > 0. Therefore,

$$u(x,t) = \frac{1}{4} \int_{x-2t}^{x+2t} s ds = xt.$$

In the region (III):

For $(x,t) \in III$, we have x - 2t < 1, x + 2t > 1, t > 0. Therefore,

$$u(x,t) = \frac{1}{4} \left(\int_{x-2t}^{1} 1 ds + \int_{1}^{x+2t} s ds \right) = \frac{1}{4} (x+2t-1).$$

Theorem 6.0.1 Uniqueness: *The IBVP:*

$$u_{tt} - c^2 u_{xx} = h(x,t), \ t > 0, x \in (0,L)$$

$$u(x,0) = f(x), u_t(x,0) = g(x), \ x \in (0,L)$$

$$u(0,t) = a(t), u(L,t) = b(t), \ t \ge 0.$$

has at most one solution.

Proof. Let u_1 and u_2 be two solutions, then $w(x,t) = u_1(x,t) - u_2(x,t)$ satisfies the problem

$$w_{tt} - c^2 w_{xx} = 0, \ t > 0, x \in (0, L)$$

$$w(x, 0) = 0, w_t(x, 0) = 0, \ x \in (0, L)$$

$$w(0, t) = 0, w(L, t) = 0, \ t \ge 0.$$

Consider the function

$$E(t) = \frac{1}{2} \int_0^L (w_t^2 + c^2 w_x^2) dx$$

Then

$$E'(t) = \int_0^L (w_t w_{tt} + c^2 w_x w_{xt}) dx$$

Also $c^2 w_x w_{xt} = c^2 \left(\frac{\partial}{\partial x} (w_x w_t) - w_{xx} w_t \right) = c^2 \frac{\partial}{\partial x} (w_x w_t) - w_{tt} w_t$. Therefore,

$$E'(t) = \int_0^L c^2 \frac{\partial}{\partial x} (w_x w_t) dx = c^2 w_x w_t \Big|_0^L = 0.$$

Here we used w(0,t) = 0, $w_x(L,t) = 0$. This implies E(t) is constant. But E(0) = 0. Hence $E(t) \equiv 0$. That is

$$w_t^2 + c^2 w_r^2 = 0.$$

Therefore $w_t(x,t) = 0$, $w_x(x,t) = 0$. Hence w(x,t) is constant. Finally using w(x,0) = 0 we get $w(x,t) \equiv 0$.

6.0.1 Higher dimensions

Let h(x) be a continuous function on \mathbb{R}^n , let

$$M_h(x,r) = \frac{1}{w_n} \int_{|\xi|=1} h(x+r\xi) dS_{\xi}$$

be the spherical mean of h(x) on a sphere of radius r and center x. Here w_n is the surface area of unit sphere S^{n-1} and dS_{ξ} denotes the surface measure. Since h(x) is a continuous function, $M_h(x,r)$ is continuous in x and r. Taking limit $r \to 0$, we get $M_h(x,0) = h(x)$. Moreover if $h \in C^k(\mathbb{R}^n)$ then $M_h(x,r) \in C^k(\mathbb{R}^n \times \mathbb{R}^n)$. Differentiaing M_h with respect to r partially, we get

$$\frac{\partial}{\partial r} M_h(x,r) = \frac{1}{w_n} \sum_{i=1}^n \int_{|\xi|=1} h_{x_i} \xi dS_{\xi}$$

Integrating by parts on $|\xi| < 1$ (unit exterior normal $\hat{n} = \xi$), we get

$$\begin{split} \frac{\partial}{\partial r} M_h(x,r) &= \frac{1}{w_n} \sum_{i=1}^n \int_{|\xi| < 1} \frac{\partial}{\partial \xi_i} \left(h_{x_i}(x + r\xi) \right) d\xi \\ &= \frac{1}{w_n} \sum_{i=1}^n \int_{|\xi| < 1} h_{x_i x_i}(x + r\xi) r d\xi \\ &= \frac{r}{w_n} \Delta_x \int_{|\xi| < 1} h(x + r\xi) d\xi \end{split}$$

Now by the change of variable $\xi' = r\xi$, we get $d\xi' = r^n d\xi$ and

$$\int_{|\xi|<1} h(x+r\xi)d\xi = \frac{1}{r^n} \int_{|\xi'|< r} h(x+\xi')d\xi'$$

$$= \frac{1}{r^n} \int_0^r \rho^{n-1} \int_{|\xi|=1} h(x+\rho\xi)dS_{\xi}d\rho$$

$$= \frac{w_n}{r^n} \int_0^r \rho^{n-1} M_h(x,\rho)d\rho$$

Therefore,

$$\frac{\partial}{\partial r} M_h(x,r) = \frac{1}{r^{n-1}} \Delta_x \int_0^r \rho^{n-1} M_h(x,\rho) d\rho$$

Differentiating with respect to r implies

$$\frac{\partial}{\partial r}\left(r^{n-1}\frac{\partial}{\partial r}M_h(x,r)\right) = \Delta_x M_h(x,r)r^{n-1}$$

That is equivalent to

$$\left(\frac{\partial^2}{\partial r^2} + \frac{n-1}{r}\frac{\partial}{\partial r}\right)M_u(x,r) = \Delta_x M_h(x,r).$$

This is called Darboux equation.

Cauchy problem in *n*-dimensions:

Now consider the problem

$$u_{tt} = c^2 \Delta u, x \in \mathbb{R}^n, t > 0$$

 $u(x,0) = g(x), u_t(x,0) = h(x), x \in \mathbb{R}^n.$

From the above discussion, we see that

$$\frac{\partial^2}{\partial t^2} M_u(x,r,t) = \frac{1}{w_n} \int_{|\xi|=1} u_{tt}(x+r\xi,t) dS_x i$$

$$= \frac{1}{w_n} \int_{|\xi|=1} c^2 \Delta u(x+r\xi,t) dS_x i$$

$$= c^2 \Delta_x M_u(x,r,t)$$

Thereofre from the above Darboux equation, we get

$$\frac{\partial^2}{\partial t^2} M_u(x, r, t) = \left(\frac{\partial^2}{\partial r^2} + \frac{n-1}{r} \frac{\partial}{\partial r}\right) M_u(x, r, t) \tag{0.1}$$

This is called Euler-Poisson-Darboux equation. The initial conditions become

$$M_u(x,r,0) = M_g(x,r), \ \frac{\partial}{\partial t} M_u(x,r,t) = M_h(x,r).$$

We can solve this Cauchy problem in the varibles t and r to obtain $M_u(x,r,t)$ and u(x,t) may be obtained as limit

$$u(x,t) = \lim_{r \to 0} M_u(x,r,t).$$

Wave equation in \mathbb{R}^3

From the equation (0.1) with n = 3, we obtain

$$\frac{\partial^2}{\partial t^2} M_u(x, r, t) = \frac{c^2}{r} \frac{\partial^2}{\partial r^2} (r M_u(x, r, t))$$
(0.2)

At each x, let $V^x(r,t) = rM_u(x,r,t)$. Then V^x satisfies the IBVP:

$$\frac{\partial^2}{\partial t^2} V^x(r,t) = c^2 \frac{\partial^2}{\partial r^2} V^x(r,t), \ r > 0, t > 0 \tag{0.3}$$

$$V^{x}(r,0) = rM_{g}(x,r), V_{t}^{x}(r,0) = rM_{h}(x,r)$$
(0.4)

$$V^{x}(0,t) = \lim_{r \to 0} rM_{u}(x,r,t) = 0.u(x,t) = 0.$$
 (0.5)

Also by defining $G^x(r) = rM_g(x, r)$ and $H^x(r) = rM_h(x, r)$ we see that G and H satisfies the compatibility condition $G^x(0) = H^x(0)$.

Therefore by D'Alembert's formula, G^x and H^x may be extended as odd functions to negative values of r to write the solution as

$$V^{x}(r,t) = \frac{1}{2} \left(G^{x}(r+ct) + G^{x}(r-ct) \right) + \frac{1}{2c} \int_{r-ct}^{r+ct} H(\rho) d\rho.$$

Since G^x and H^x are odd functions of r, we have $G^x(r-ct) = -G(ct-r)$ and

$$\int_{r-ct}^{r+ct} H(\rho) d\rho = \int_{-(ct-r)}^{ct+r} H(\rho) d\rho = \int_{-(ct-r)}^{ct-r} H(\rho) d\rho + \int_{ct-r}^{ct+r} H(\rho) d\rho = 0 + \int_{ct-r}^{ct+r} H(\rho) d\rho$$

Therefore,

$$M_u(x,r,t) = \frac{1}{r}V^x(r,t) = \frac{1}{2r}(G^x(r+ct) + G^x(ct-r)) + \frac{1}{2cr}\int_{ct-r}^{r+ct}H(\rho)d\rho$$

That is,

$$M_{u}(x,r,t) = \frac{1}{2r} \left((r+ct) M_{g}(x,ct+r) - (ct-r) M_{g}(x,ct-r) \right) + \frac{1}{2cr} \int_{ct-r}^{r+ct} \rho M_{h}(x,\rho) d\rho$$

Taking limt $r \to 0$, we get

$$\begin{split} u(x,t) &= \frac{\partial}{\partial \tau} (\tau M_g(x,\tau)) \Big|_{\tau = ct} + \frac{1}{c} \left(ct M_h(x,ct) \right) \\ &= \frac{\partial}{\partial t} (t M_g(x,ct)) \Big|_{\tau = ct} + t \left(ct M_h(x,ct) \right) \\ &= \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{|\xi| = 1} g(x + ct \xi) dS_{\xi} \right) + \frac{t}{4\pi} \int_{|\xi| = 1} h(x + ct \xi) dS_{\xi} \\ &= \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{B(x,ct)} g(\xi) dS_{\xi} \right) + \frac{t}{4\pi} \int_{B(x,ct)} h(\xi) dS_{\xi}. \end{split}$$

This is known as Kichhoff's formula.

Remark 6.0.1 1. The domain of dependence is the sphere of radius ct around x. That is, the surface of the sphere $\{x+ct\xi : |\xi|=1\}$ in \mathbb{R}^3 . Similarly, the range of influence of a point $x_0 \in \mathbb{R}^3$ is the set of points on the cone $\{(x,t) : |x-x_0|=ct\}$. This phenomena is called presence of sharp signals. That is, A large initial disturbance near x_1 will be felt at time $t=\frac{|x_1|}{C}$ and not after that time. For example sound or light waves.

2. The loss of regularity: The formula above implies that $g \in C^3$, $h \in C^2$. Then $u \in C^2$. That is if the initial data is of C^{k+1} , then solution is C^k . So there is a loss of regularity. This occurs only in higher dimensions and not in one dimension.

Wave equation in \mathbb{R}^2

This method is also known as **Hadamard method of descent.** In this case it is not possible to write the equation (0.2). So, in this case we regard \mathbb{R}^2 as \mathbb{R}^3 with $x_3 = 0$. Therefore we need to convert the surface integrals in \mathbb{R}^3 to domain integrals in \mathbb{R}^2 . Let $u(x_1, x_2, t)$ be the required solution. Then define

$$\overline{u}(x_1, x_2, x_3, t) = u(x_1, x_2, t).$$

Then the Cauchy problem becomes

$$\overline{u}_{tt} - \Delta \overline{u} = 0 \text{ in } \mathbb{R}^3 \times (0, \infty)$$

$$\tag{0.6}$$

$$\overline{u} = \overline{g}, \ \overline{u_t} = \overline{h} \text{ on } \mathbb{R}^3 \times \{t = 0\}$$
 (0.7)

where $\overline{g}(x_1, x_2, x_3) = g(x_1, x_2)$, $\overline{h}(x_1, x_2, x_3) = h(x_1, x_2)$. Denoting $\overline{x} = (x_1, x_2, 0) \in \mathbb{R}^3$ for $x \in \mathbb{R}^2$. Then the solution of (0.6) -(0.7) is

$$u(x,t) = \overline{u}(\overline{x},t) = \frac{\partial}{\partial t} \left(t \int_{\partial \overline{B}(\overline{x},t)} \overline{g} d\overline{s} \right) + t \int_{\partial \overline{B}(\overline{x},t)} \overline{h} d\overline{s}$$

where $\overline{B}(\overline{x},t)$ is the ball in \mathbb{R}^3 with center \overline{x} and radius > 0 and $d\overline{s}$ denotes the two dimensional surface measure on $\partial \overline{B}(\overline{x},t)$. To simplify further, we note that $\partial \overline{B}(\overline{x},t) = \{y : |y-\overline{x}| = t\} = \{(y_1-x_1)^2 + (y_2-x_2)^2 + y_3^2 = t^2\}$. Now

$$\oint_{\partial \overline{B}(\overline{x},t)} \overline{g} d\overline{s} = \frac{1}{4\pi t^2} \int_{\partial \overline{B}(\overline{x},t)} \overline{g} d\overline{s} = \frac{2}{4\pi t^2} \int_{B(x,t)} g(y) (1 + |D\gamma(y)|)^{1/2} dy$$

where $\gamma(y) = (t^2 - |y - x|^2)^{1/2}$ for $y \in B(x,t)$. The factor 2 is because the sphere has upper and lower hemispheres. also

$$(1+|D\gamma|^2)^{1/2}=t\left(t^2-|y-x|^2\right)^{-1/2}.$$

Therefore,

$$\oint_{\partial \overline{B}(\overline{x},t)} \overline{g} d\overline{s} = \frac{1}{2\pi t} \int_{B(x,t)} \frac{g(y)}{(t^2 - |y - x|^2)^{1/2}} dy$$

$$= \frac{t}{2} \oint_{B(x,t)} \frac{g(y)}{(t^2 - |y - x|^2)^{1/2}} dy$$

Hence

$$u(x,t) = \frac{1}{2} \frac{\partial}{\partial t} \left(t^2 \int_{B(x,t)} \frac{g(y)}{(t^2 - |y - x|^2)^{1/2}} dy \right) + \frac{t^2}{2} \int_{B(x,t)} \frac{h(y)}{(t^2 - |y - x|^2)^{1/2}} dy$$
 (0.8)

Remark 6.0.2 1. From the formula (0.8) it is clear that the range of influence is the interior of the cone $\{(x,t): |x-x_0| \le ct\}$. Also the domain of dependence is the interior of disc $\{x+ct\xi, |\xi| \le 1\}$. So the disturbance at x_1 is felt after the time $t = \frac{|x_1|}{c}$ and it persists for all times $t > \frac{|x_1|}{c}$. This is also called absence of sharp signals. For example drop a stone in the water at x. The waves will be moving and is felt at a point x_1 at time t and later.

2. Loss of regularity: The formula (0.8) implies that if $g \in C^{k+1}$, $h \in C^k$, then $u \in C^k$. That is there is a loss of regularity.

6.0.2 Non-homogeneous Problems: (Duhamel's Principle)

In this section we will see closed form solution like D'alemberts type for non-homogeneous wave equation:

$$u_{tt} - c^2 \Delta u = f(x, t), x \in \mathbb{R}^n, t > 0$$
 (0.9)

$$u(x,0) = 0, u_t(x,0) = 0, x \in \mathbb{R}^n.$$
 (0.10)

Recall the Duhamel's principle for system of ODE's

$$X' + AX = F(t), X(0) = X_0$$

Then

$$X(t) = X_0 e^{At} + \int_0^t e^{-A(t-s)} F(s) ds$$

If we define S(t) as solution operator in the sense that $X_0 \mapsto S(t)X_0$ satisfies

$$X' + AX = 0, X(0) = X_0$$

and the above formula is actually written as

$$X(x) = X_0 e^{at} + \int_0^t S(t-s)F(s)ds$$

So if we can define S(t) for wave equation then we can write a candidate for solution. The above wave equation may be written as the system:

$$u_t = v,$$

 $v_t = u_{tt} = c^2 \Delta u + f(x, t)$

This may be written as first order system with $U = (u, v)^T$

$$U_t + AU = F, U(0) = (0,0)^T$$

where
$$A = \begin{pmatrix} 0 & 1 \\ c^2 \Delta & 0 \end{pmatrix}$$
 and $F = \begin{pmatrix} 0 \\ f(x,t) \end{pmatrix}$.

So the solution of this problem is

$$U(t,x) = \int_0^t S(t-s)F(s,x)ds$$

where S(t) is the solution operator of homogeneous system in the sense that for $\Phi = (\phi, \psi)^T$, $V(t, x) = S(t)\Phi$ satisfies

$$V_t + AV = 0, \ V(0) = \Phi$$

and U(t,s,x) = S(t-s)F(x,s) is a solution of

$$U_t + AU = 0$$
, $U(t,t,s) = F(x,s)$ on $\{t = s\}$

That is

$$\begin{pmatrix} u_t \\ u_{tt} \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ c^2 \Delta & 0 \end{pmatrix} \begin{pmatrix} u \\ u_t \end{pmatrix} = 0,$$

and the initial condition

$$\begin{pmatrix} u \\ u_t \end{pmatrix} = \begin{pmatrix} 0 \\ f(x,s) \end{pmatrix} \text{ on } \{t = s\}$$

So it is equivalent to solve the initial value problem

$$u_{tt} - c^2 \Delta u = 0, x \in \mathbb{R}^n, t > s \tag{0.11}$$

$$u(x,0) = 0, u_t(x,s) = f(x,s), x \in \mathbb{R}^n, \{t = s\}.$$
 (0.12)

In dimension n = 1 this is given by the D'Alemberts formula

$$u(x,t,s) = \frac{1}{2c} \int_{x-c(t-s)}^{x+c(t-s)} f(y,s) dy$$

Hence the candidate for solution of non-homogenous equation is

$$u(x,t) = \int_0^t u(x,t,s)ds = \frac{1}{2c} \int_0^t \int_{x-c(t-s)}^{x+c(t-s)} f(y,s) \, dy \, ds \tag{0.13}$$

Using the fundamental theorem, one can show the following theorem:

Theorem 6.0.2 If U(x,t,s) is C^2 in x and t, continuous in s, and solves the problem (0.11)-(0.12), then

$$u(x,t) = \int_0^t U(x,t,s)ds$$

solve the problem (0.9)-(0.10).

6.0.3 problems

- 1. Show that if u(x,t) satisfies parallologram property and is sufficiently smooth then u(x,t) is a classical solution of the wave equation.
- 2. Show that (0.13) satisfies the non-homogeneous problem (0.9)-(0.10).