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Motivation: Consolidation of network science

The study of graphs and networks goes back at
least to Euler. People from a wide range of
disciplines have contributed: Mathematicians,
Computer Scientists, Electrical Engineers,
Sociologists, Physicists, Statisticians...

This has led to a fragmented literature, with
inconsistent terminology and frequent reinvention
of concepts and methodologies

. . e : Courtesy: Wikipedia
Our aim is to utilise the power of computing and

data mining techniques to construct a
comprehensive database of networks and network
algorithms, and use this to systematically
investigate patterns of relationships between
different kinds of networks and metrics/features

This kind of data-driven approach may allow us to
choose the most relevant features for a given task,
motivate appropriate network models, and in
general answer the question: What are the best
ways of thinking about networks?




What is “high throughput network analysis™?

An attempt to study network properties at a rather abstract level, using computing

power to automate many different analytic procedures across many different
networks

This gives us a matrix of networks versus metrics/features, which can be mined to

identify features and networks of interest, cluster them into ‘families’, learn predictive
models for system phenotype etc.

It Is a way of organising and systematising the diverse range of network analysis
techniques to give us a better sense of the current state of the field

Data matrix: Correlation matrix: Correlation matrix;
networks vs. metrics networks vs. networks metrics vs. metrics



-of networks do we study?

have been used to study a wide variety of data:

iorks (railways, telephone lines, internet)
ks (WWW, cell phones, e-mail)
,ndship/kinship, Facebook, Twitter)

= Ecological
*  Neural

= Subcellular (metabolic, protein-protein, gene regulation)

- We attempt to gather as many data sets as we can from different sources,
and also construct synthetic data sets for comparative purposes



What kinds of metrics do we study?

GEMINT

Community
structure: partition
entropy, modularity,
coarse-grained
networks



Network Families: Single linkage clustering
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Network Families: Principal Component Analysis

Principal component analysis
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Network Classification

Decision tree gives ~80% accuracy on a 12-class task
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Courtesy: Wikipedia

Example: Phylogenetic Comparative Methods

We can use features of
biological networks in
conjunction with independent
evolutionary phylogenies to
search for 'phylogenetic signals’,
l.e., properties that are most
conserved in closely related
species

The idea is to assume a
statistical process governing the
evolution of any given trait (e.qg.,
Brownian motion), and compute
the likelihood of seeing the
observed distribution of trait
values at the leaves of the tree



We attempted to fit a
Brownian motion
model of evolution
(V=Bt+¢€)to 272

real-valued network
metrics computed on
450 metabolic
networks from 158
different genuses,
using a phylogeny

1
taken from the Tree 2
of Life :
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A realistic phylogeny gives significant feature correlations

An unbalanced version of the tree (with no branch weights) was
compared with a balanced version (all leaves at the same depth)

We used deviance (sum of sqaures of the residuals, €) as a measure
of the goodness-of-fit of the model for each metric/feature

Unbalanced (unweighted) phylogeny Balanced (weighted) phylogeny

©  Simulated features
“  Actual features

¢ Shuffled features
“ Random features
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Metabolic Networks: Best-fit features on varying phylogenies

\We compare the quality of fit (deviance) for the best-fit real network
features with the best-fit shuffled features

The difference is significant only on the balanced phylogeny

All species, unbalanced phylogeny: best-fit features by deviance All species, balanced phylogeny: best-fit features by deviance
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Signals are weaker on just bacterial or eukaryotic trees

Bacterial species, balanced phylegeny: best-fit features by deviance
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Eukaryotic species, balanced phylogeny: best-fit features by deviance
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The best features are still significantly better-fit than shuffled versions,
but the difference appears to be most pronounced when bacteria and
eukaryotes are both present in the phylogeny



Conclusions and Further Work

Our approach is an attempt at systematically comparing and categorising a variety
ways of measuring network structure and properties, and also looking at
robustness and scaling properties of different metrics

A data-driven approach to examining large numbers of networks and metrics is
useful for feature selection in classification tasks, identifying redundant metrics and
matching real-world networks to appropriate generative models

Quantifying the significance of biological network features in the context of
evolutionary phylogenies provides one approach towards the problem of
establishing relationships between network structure and function

Our focus in the coming few months will be to carry out specific case studies along
these lines to demonstrate the value of the project; ultimately it provides a tool
which can give meaningful results only in the context of an appropriately framed
scientific question
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