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Abstract

Reverse engineering gene regulatory network using expression data is a tough

task due to the complex nature of these networks. Bayesian inference have

long been put into play for learning these networks. However, they are limited

to using only the information derived from data. Here, we attempt to include

expert knowledge as a prior information for network reconstruction. One such

property of biological networks is scale-free structure. We combine scale-free

prior on graph structure with genetic algorithm as a sampling algorithm for

network inference. We compare scale-free prior with uniform prior and show

that the former outperforms the latter under the condition that network

being learned has scale-free nature. We also compare it against ARACNE

and find that scale-free prior performs relatively low. In addition, we ran our

scale-free prior on HCC1954 breast cancer cell data and find that it recalls a

significant fraction of known interactions.
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Chapter 1

Introduction

The recent advancement in the technology for high-thoughput data collection

in molecular biology has led to a burst of genomic data. The huge amount of

data generated by gene expression arrays have given researchers the oppor-

tunity to utilise these information to create a positive impact in the field of

biology, medicine and pharmacology. In this thesis we talk about computa-

tional methods that have been making this possible and on ways to improve

these methods.

1.1 GENE REGULATORY NETWORK

A gene regulatory network (abbreviated as GRN) is defined as a “collection

of DNA segments in a cell which interact with each other indirectly (through

their RNA and protein expression products) and with other substances in

the cell to govern the gene expression levels of mRNA and proteins” [7].

GRNs can be represented by a typical graph or network like structure - the

genes being the node and the interaction being represented by edges. More

specifically, it is comprised of “nodes”, the genes and their regulators, joined

together by “edges”, which represent physical and/or regulatory interactions

[16]. These interactions in turn can be promotory or inhibitory in nature.

The Figure 1.1 shows an example of a GRN.

A proper understanding of the GRNs can help us predict causal molecular

pathways at cellular level. In addition to predicting physical interactions,

GRN edges can also help us identify regulatory relationships and complex

cascading pathways, which can be immensely helpful in fields of medicine

and pharmacology [16].
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1.2 GENE EXPRESSION DATA 2

Figure 1.1: Example of a regulatory network

1.2 GENE EXPRESSION DATA

Gene expression is the process by which information from a gene is used in

the synthesis of a functional gene product. The gene expression mechanism is

used by all the life forms. This is the basis of the versatility and adaptibility

of any organism.

These expression levels are measured under controlled experimental condi-

tions using DNA microarrays. Multiple microscopic DNA spots are attached

to the surface of the microarray. Each spots contains a particular DNA se-

quence which is called a Probe. The activation level of probes corresponds to

the expression level of genes [5]. The array expression data is of 2D-matrix

form, where each row corresponds to a gene and the column corresponds to a

particular experimental condition. The entries against each gene corresponds

to its expression level. Figure 1.2 picturises the gene expression matrix.

Figure 1.2: Gene expression matrix
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1.3 RECONSTRUCTION OF GRNs 3

1.3 RECONSTRUCTION OF GRNs

Since we do not know the true biological networks apriori, we deploy com-

putational and statistical methods to try learn the GRN. We use machine

learning methods to infer information from the gene expression data in or-

der to reconstruct the GRN. Previous efforts for statistical modeling of gene

regulatory network has fallen into one of the two categories, Boolean mod-

els [1] or systems of differential equations [4]. There is yet another approach

adopted by Friedman, et al [8], which uses Bayesian networks to analyze gene

expression data. This thesis focuses on this approach and suggests some ways

to improve its performance.

1.4 MOTIVATION AND PROBLEM DEFI-

NITION

It is very common for the computational methods deployed to reconstruct

GRNs to use only the information inferred from the gene expression data.

A lot of reserach has been done on the biological networks, that gives us

information about structural and organisational properties of these networks.

There is a possibility that we can use these prior information in the network

reconstruction.

In this thesis we incorporate one such structural property of the biological

network, namely the scale-free property as a prior information for network

reconstruction. We assess the performance improvement after using scale-

free prior, and also compare against network learning methods other than

Bayesian networks. The learning algorithm augmented with scale-free prior

is also tested on some real data.
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Chapter 2

Bayesian Network

Graphical models [15] are a special class of models that are extensively used

for formal statistical inference of systems having multiple interacting com-

ponents. GRNs can be classified as one such system. A graphical model is

characterised by two things:

• Graph: Describes probablistic relationship between variables, and

• Parameters: Specifies conditional distribution specified by the graph.

Bayesian Network (abbreviated as BN) inference is one such generic and a

widely used framework for fitting probabilistic models to data.

2.1 BASIC THEORY OF BN

A Bayesian Network [8] is an acyclic directed graph that uniquely specifies

a joint probability distribution over a set of random variables. Let us first

define some variables before going into the theory. Define:

• χ = {X1, · · · , Xn} as set of discrete random variables Xi. These are

the various genes in our case.

• D = {Y1, Y2, · · · , Yn} as observed instances of χ. This is the Microarray

expression data in our case.

• < G,Θ > as specifying BN for χ. The variable G corresponds to a

directed grpah whose nodes are from χ. Θ is a set of parameters that

together quantifies the probability distribution of each variable in the

graph. < G,Θ > will be the reconstructed GRN in our case.

c© 2015, Indian Institute of Technology Delhi



2.2 BAYESIAN SCORING METRIC 5

Under the classic Naive Bayes assumption, each variable Xi is considered

independent of its non-descendants given its parents in G. Thus, the BN

uniquely specifies a joint probability distribution over χ given by:

P (X1, · · · , Xn) =
n∏
i=1

P (Xi|Pa(Xi)) (2.1)

The objective is now to find the most probable graph G for explaining the

data contained in D. For this we need to introduce a scoring metric that tells

us how probable a given graph G explains the data D. This scoring metric

is discussed in next section.

2.2 BAYESIAN SCORING METRIC

In order to rank a given graph G as to how probable it explains the data

contained in D, we need to introduce a scoring metric called the Bayesian

scoring metric [10]. This metric is defined as the log of the probability of G

given D.

BayesianScore(G) = log p(G|D) (2.2)

BayesianScore(G) = log p(D|G) + log p(G)− log p(D) (2.3)

Since, log p(D) is constant for all graphs G, we can remove this term from

the scoring metric. Thus, BayesianScore becomes:

BayesianScore(G) = log p(D|G) + log p(G) (2.4)

The term log p(D|G) is called the log-likelihood, whereas the term log p(G)

is called the log-prior term.

2.3 INCORPORATING PRIORS

In the absence of any specific prior knowledge, it is common to choose as

uninformative prior as possible, typically a prior distribution that is uniform
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2.3 INCORPORATING PRIORS 6

over all models. For instance, it is a general practice to maximise only the

likelihood. In such case, the scoring metric is defined as:

BayesianScore(G) = log p(D|G) (2.5)

There is yet another variant of uniform prior scoring metric that is called

the Bayesian Information Criterion or BIC. BIC is actually a penalized

maximum likelihood estimate, that penalizes excessive edges in the graph.

This is the most extensively used version of the scoring metric and is defined

as:

BIC = −2log(p(D|G)) +Klog(n) (2.6)

where K is the number of edges in the grpah G and n is the number of data

points contained in D. BIC helps in avoiding over-fitting of data.

In most of the cases taking a uniform prior over the entire range may cor-

respond to a bias towards unrealistic values. There are several properties

of biological networks that have already been established. If we make use

of these information in addition to data in network inference, we might be

able to increase the efficiency of GRN reconstruction. These information will

enter the scoring metrics via log-prior term, i.e. log p(G). One such property

is the scale-free property of the biological network. This is discussed in the

next chapter.
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Chapter 3

Scale-Free prior

3.1 BACKGROUND AND MOTIVATION

A scale-free network is a network whose degree distribution of nodes follows a

power law, atleast asymptotically. The probability that a node of a scale-free

network has k edges, or alternatively k adjacent nodes is governed by the

following distribution:

p(k) ∼ k−γ (3.1)

This basically suggests that there are very many nodes with only a few link,

and in addition few hubs are present with large number of links. Figure 3.1

depicts the scale-free property pictorially.

Figure 3.1: Scale-free property

There are a broad class of networks that follow this scale-free property, like

the Internet or the World Wide Web. In the work done by Newman et al.

[22], this property is shown to be the characterisitc of biological networks as

well. Therefore, we formulate the scale-free prior in the following section and

use that as prior in GRN reconstruction.
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3.2 FORMULATING SCALE-FREE PRIOR 8

3.2 FORMULATING SCALE-FREE PRIOR

The initial formulation of the scale-free prior was done in the work done by

Sheridan et al. [26]. A similar work was also done by Bender et al. (2011) [3].

Define: V = {v1, · · · , vn} as the fixed set of nodes in a given graph structure

G. The scale-free prior probability on the graph structure can be calculated

as follows:

• First, assign a probability Pi to each node i ∈ 1...N :

Pi =
i−µ∑N
j=1 j

−µ
≈ 1− µ
N1−µ i

−µ (3.2)

The probability Pi decreases with increasing i, and this probability

summed up over all i is equal to 1, i.e.
∑

i∈1...N Pi = 1. µ is defined as

µ = 1
γ−1 , γ ∈ [2;∞).

• Assuming the nodes are selected independent of each other with prob-

ability proportional to Pi, the probability of two nodes not being con-

nected is defined as:

P̄ij = (1− 2PiPj) ' e−2NKPiPj (3.3)

where K is a prameter that controls the mean number of edges.

• The probability of any structure Gσ = (V,E) of node set V, edge set

E and a permutation σ = {σ1, ..., σN} of all nodes in G is given by the

product of probability of the edges that are present and the probability

of edges not being present. This can be given by:

P (Gσ) =
∏

{vi,vj}∈E

Pij
∏

{vi,vj}/∈E

P̄ij (3.4)

P (Gσ) =
∏

{vi,vj}∈E

(1− P̄ij)
∏

{vi,vj}/∈E

P̄ij (3.5)

P (Gσ) =
∏

{vi,vj}∈E

(1− e−2NKPiPj)
∏

{vi,vj}/∈E

(e−2NKPiPj) (3.6)
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3.2 FORMULATING SCALE-FREE PRIOR 9

• Different permutations of σ are generated, resulting in one graph Gσ

for each permutation. If the total number of permutation generated is

B, then the final probability of G is averaged over each of them:

P (G) =
1

B

∑
σ

P (Gσ) (3.7)

This formulation of scale-free prior can now be used with any of the scoring

metric that has scope for incorporating the prior term.
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Chapter 4

Genetic Algorithm for GRN re-

construction

4.1 SAMPLING BASED ALGORITHM

In our task of GRN reconstruction using Bayesian inference, we try to search

for a graph that scores maximum according to the given scoring metric. The

limiting point is that this task is computationally very expensive to be done

in real time. The number of possible graphs (or networks) for a given set of

variables (genes) V , increases super-exponentially with |V |. This motivates

us to use sampling based algorithm for optimal network search.

There are two primary sampling techniques that we tried to use:

Genetic Algorithm (GA): In GA we evolve a population of candidate

networks. We start with an initial population and successively create next

generation population by sharing information among the members of the pre-

vious population. This generation is stopped after we reach the convergence

criteria or after a fixed number of iterations. The final network contains

edges that are present in significant numbers in the population [2].

Markov Chain Monte Carlo (MCMC): This sampling approach is based

on the previous work done by Werhli et al. [29]. In this approach we start

with a given network G, and try to define a neighbourhood around G by

adding, deleting or reversing edges in G. Then one of the network from the

neigbourhood is selected using Metropolis-Hastings sampler [9]. A similar

process is now applied to this new network to create a chain of networks.

The chain is finally terminated when we approach the convergence criteria,

and the final network of the chain is our network of interest.

We tested both GA and MCMC on our syntheic data with 10 and 20 nodes.

We observed that GA outperformed MCMC in both the instances. The com-
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4.2 GA SPECIFICATION 11

paring criteria and the performance are discussed in next chapter. Usefulness

of GA in network reconstruction approaches have also been established in the

work done by Wahde and Hertz [28], and Spieth et al. [27]. Therefore, we

decided to work using GA algorithm in the future course of our experiments

with Bayesian inference and scale-free prior.

4.2 GA SPECIFICATION

Before we go into the specifications of GA, let us define some variables:

• P : Defined as the initial set of populations. P = {Gj : j ∈ 1, ..., p} of

p networks.

• q: It is a parameter of GA that defines the crossover rate as q and the

selection rate as (1− q). q ∈ [0; 1]

• m: It is a parameter of GA that defines the mutation rate. m ∈ [0; 1]

• Fitness of a network is defined as the network score given by a scoring

metric (discussed in Chapter 2).

From the current population P , we create the next generation population P ′

using the following three steps:

Selection: A fraction (1 − q)p of the individuals in P are selected with

probability proportional to their fitness. If fitness of the selected network is

greater than the median fitness of P , the network is added to next generation

population P ′.

Crossing over: A fraction qp
2

random pairs of individuals are choosen with

probability proportional to their fitness. Crossing over is performed for each

of these pairs. In order to achieve this, the columns of the adjacency matrix

of each network is attached to one another to represent it as a vector. Then a

two point cross over is performed for these vectors. If the individual obtained

after performing cross-over has fitness greater than the median fitness of P ,

it is added to P ′. If the population size remains less than p after performing
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4.3 SCALE-FREE PRIOR IN GA 12

cross-over, we add individuals from P to P ′ randomly unless there are p

members in P ′.

Mutation: A fraction of mp networks are choosen from P ′. For each of the

selected network, a random edge is drawn and its type is changed to one

of the remaining type. If performing this step increases the fitness of the

network, the old network is replaced by the mutated network.

Successive iterations of population evolution is performed unless we reach

the convergence criteria or a maximum number of iterations. The GA is said

to converge if the median score of the population does not change over 10

iterations in a row.

When the GA terminates we have a population of networks. In the final

network we include edges that are present in some significant indivduals of

the population. If the significance threshold is τ ∈ [0; 1], then an edge is

included in the final network if it occurs in more than τ × p individuals in

the final population.

4.3 SCALE-FREE PRIOR IN GA

The scale-free prior can be easily incorporated in GA by virtue of the fitness

measure of the individual network in the population. Since fitness is nothing

but one of the scoring metric discussed in Chapter 2, the prior information

can be incorporated in the log-prior term of the Bayesian score metric. In

addition, the initial population to start the GA is also drawn from the prior

type, i.e. scale-free prior in our case.
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Chapter 5

Results and Discussion

5.1 SYNTHETIC DATA

To test the performace of our learning algorithm we first test it on synthetic

data. If it performs well on the synthetic data, it is then tested on real data.

5.1.1 Normal Sampling

The normal sampling of data is similar to the one used in C.Bender et al.

[3]. A scale-free network was generated using γ as the control parameter. γ

basically controls the ’scale-free’ness of the network. Some randomly selected

edges were changed to inhibitory edges, such that the network has atleast

20% of the edges that are inhibitory in nature. A node is said to be activated

if all the edges incident on it is activating and there are no inhibiting edges

incident on it. In other cases it is said to be inhibited.

The expression level of activated node was sampled from the normal distribu-

tion N (2000, 400), that of the inhibited node was sampled from N (1200, 400)

and that of stable node was sampled from N (1600, 400). The parameters for

the normal distribution (mean and standard deviation) were choosen similar

to the values observed in real data.

5.1.2 Mendes model

Another set of synthetic data was generated using Mendes model [20] that

follows multiplicative Hill Kintetics [11] to approximate the transcriptional

interactions. In this model there is one differential equation for each gene

(given by equation 5.1). The RHS of equation has two terms - one posotive

term that represents transcription and one negative term that represents

mRNA breakdown.
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5.2 PERFORMANCE METRIC 14

dGi

dt
= s(G1, · · · , Gn)− b(Gi) (5.1)

where Gi = abdundance of mRNA of gene i, s(G1, · · · , Gn) = rate law rep-

resenting mRNA synthesis and b(Gi) = mRNA breakdown.

The expression level of each gene is sampled at different time points. Al-

though this model is a simplification of real biological network, it gives a

reasonably complex interaction network that very well approximates the tran-

scriptional interaction. Any good learning algorithm should be expected to

perform well on this set of data. All the simulations for Mendes model was

performed using the sysgensim software [24].

5.2 PERFORMANCE METRIC

Before we discuss about the performance metrics used for assessing the per-

formance of our algorithm, let us define some variables:

• NTP as number of true positive arcs in reconstructed network

• NFP as number of false positive arcs in reconstructed network

• NTN as number of true negative arcs in reconstructed network

• NFN as number of false negative arcs in reconstructed network

We define two quantities - sensitivity(SN) that counts true occurences and

specificity(SP) that counts false occurences as follows:

SN =
NTP

NTP +NFN

(5.2)

SP =
NTN

NFP +NTN

(5.3)

At different inclusion threshold (τ ∈ [0; 1]) in GA, we obtain different values

of SN and SP . τ is varied in the range 0 to 1, and a set of SN and

SP values are obtained. The SN values when plotted against (1 − SP )
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5.3 POPULATION SIZE IN GA 15

gives us the receiver operator characteristic (ROC) curves. The area under

the ROC curve (also known as AUC) gives us the measure of algorithm’s

performance. Greater the AUC, better is the performance. AUC for a good

learning algorithm is expected to be atleast 0.5.

All the results and numbers that have been mentioned in the sub-sections to

follow have been averaged over five different synthetic data generations.

5.3 POPULATION SIZE IN GA

The size of the population in the GA is a parameter that has to be choosen

in advance. There are many possible population size that can be used for

network reconstruction. Trying different population sizes for the same exper-

iment setting can be computationally expensive and redundant at the same

time. Therefore, it will be better if we find an optimal population size at

which the performance of the learning algorithm saturates.

In order to achieve this, we ran GA with scale-free prior on network with

50 and 100 nodes; and data generated from Mendes model. The γ for

scale-free prior was set to 2.3. The population size was varied from the

set {100, 250, 500, 750, 1000}. The AUC obtained for each of them is plotted

in the following figure:

We observe in Figure 5.1 that the AUC for both 50 and 100 nodes saturates

at a population size of 500. Increasing the population size after 500 leads to

no or very insignificant change in the AUC. We therefore, fix the population

size to 500 for all our future course of experiments.

5.4 PERMUTATION COUNT FOR SCALE-

FREE PRIOR

As discussed in section 3.2, we use the method of averaging over several

node permutations to obtain the final prior value. In order to obtain an

optimal choice of the permutation count, we performed an experiment with
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5.4 PERMUTATION COUNT FOR SCALE-FREE PRIOR 16

(a) 50 nodes (b) 100 nodes

Figure 5.1: AUC with varying population size

different permutation counts to see at what count the prior value saturates.

The permutation count was varied from the set {100, 250, 500, 750, 1000},
the data was generated from Mendes model for a network size of 50 and 100

nodes. The results are tabulated below:

Permutation Count Prior Value, N=50 Prior Value, N=100
100 -42.84 -72.25
250 -41.84 -70.01
500 -41.55 -69.53
750 -41.34 -69.21
1000 -41.32 -69.19

Table 5.1: Prior values for varying permutation count

We observe from the Table 5.1 that variance among different permutation

counts for a given graph size is very less and it almost converges after a

permutation count of 250 for both N=50 and N=100. Thus a value of 500 as

the permutation count seems a reasonably good choice for future experiments.

The method of averaging over permutations is not an standard one but gives

us a close to actual prior value of the graph. The greater the number of

permutations, we achieve a more precise value of prior. There is yet another
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approximate method for calculating P (G). Under this method the nodes in

G having greater number of nodes are assigned a lower index i. This method

tries to maximise P (G|σ) instead of averaging P (G|σ).

5.5 GA vs MCMC

In section 4.1 we talked about the need for sampling algorithm. A choice

was to be made between GA and MCMC as our sampling-based algorithm

for our future experiments. In order to achieve this, we ran both GA and

MCMC for N=10 and N=20 nodes, believing that the one which performs

well in smaller networks will also perform well in bigger networks. The data

was generated using Mendes model. The γ for scale-free prior was set to 2.3.

The network reconstruction was done with both uniform as well as scale-free

prior. The results are tabulated below:

Experiment Setting AUC for MCMC AUC for GA
N=10, Uniform prior 0.518 0.633
N=10, Scale-free prior 0.569 0.675
N=20, Uniform prior 0.504 0.540
N=20, Scale-free prior 0.531 0.578

Table 5.2: AUC comparison for GA and MCMC

We observe in Table 5.2, that GA outperforms MCMC in both N=10 and

N=20 network sizes and with either of the prior type. We therefore selected

GA as our sampling-based algorithm. Thus, for all our future course of

experiments we will be using GA with a population size of 500.

5.6 UNIFORM vs SCALE-FREE PRIOR

In order to compare uniform prior and scale-free prior, we ran GA with both

types of prior on the synthetic data. The population size was set to 500. The

data was generated for {10, 20, 50, 100} nodes using both Normal sampling

as well as Mendes model. The network from which data was sampled, was

c© 2015, Indian Institute of Technology Delhi



5.6 UNIFORM vs SCALE-FREE PRIOR 18

generated using scale-free structure with γ = 2.3. The γ parameter of the

scale-free prior in GA for reconstructing the network was also set to 2.3. ROC

analysis was done on each of them. The ROC curves are plotted below:

(a) 10 nodes (b) 20 nodes

(c) 50 nodes (d) 100 nodes

Figure 5.2: ROC curves for different prior types (Normally sampled data)

We observe in Figure 5.2 and Figure 5.3 that scale-free prior outperforms

uniform prior under all the given experiment setting. This suggests that when

the original network has a scale-free structure, combining the information

from data with scale-free prior can help improve performance than using the
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(a) 10 nodes (b) 20 nodes

(c) 50 nodes (d) 100 nodes

Figure 5.3: ROC curves for different prior types (Mendes model data)

information from data only (using uniform prior).

5.7 FINE GRAINED SAMPLING OF γ

The use of scale-free prior in GA for network reconstruction depends on the

choice of scale-free parameter γ. In most of the real scenarios, this γ is not
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known in advance. In this section we try to study the sensitivity of scale-free

prior performance to γ. The data is generated similar to previous section

for 100 nodes using both Normal sampling and Mendes data. The scale-free

parameter (γ) of data generating network is set to 2.3. The γ of scale-free

prior in GA is varied from the set {1.7, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 3.0}. The

ROC analysis is done for each of them and the AUCs obtained are tabulated

below:

Experiment Setting N=100, Normal data N=100, Mendes model
Uniform prior 0.522 0.512
γ = 1.7 0.521 0.512
γ = 2.0 0.517 0.517
γ = 2.1 0.539 0.527
γ = 2.2 0.550 0.530
γ = 2.3 0.573 0.537
γ = 2.4 0.543 0.525
γ = 2.5 0.538 0.513
γ = 2.6 0.500 0.513
γ = 3.0 0.526 0.510

Table 5.3: AUC comparison for varying scale-free parameter(γ)

We observe that scale-free prior’s performance is quite sensitive to the choice

of γ. Indeed, within a delta of 0.2 around the original scale-free parameter

(γ = 2.3), the algorithms performs reasonably well relative to the uniform

prior. Thus, we get a range under which we can expect the scale-free prior

to work well, i.e. around 0.2 delta of original γ.

5.8 COMPARISON WITH OTHER METH-

ODS

We compared our GA augmented with scale-free prior with the state of the art

network learning algorithm ARACNE, as well as another version of Bayesian

inference called bnlearn. They are briefly discussed below:

ARACNE: This network inference algorithm was proposed by Margolin and

Basso et al. [19]. This learning method uses information theoretic approach
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to reconstruct GRN. It works under the assumption that all gene dependency

can be inferred from pairwise statistical information and that no higher order

ananlysis needs to be done.

ARACNE follows Data Processing Inequality(DPI) to reconstruct GRN. It

first finds the pairwise mutual information between all the genes. Then it

creates a graph in which gene gi is connected to gene gj, if MI(gi, gj) > I0

, where I0 is some threshold value. Then it considers all the gene triplets in

this thresholded graph and removes the edge with the minimum value.

bnlearn: This is a newly developed and extensively used implementation of

Bayesian inference that was originally developed as an R package [25]. It pro-

vides options for using analytical expression for likelihood optimisation from

data. Thus it is nothing but a more comprehensive way of doing likelihood

optimisation for network inference.

Synthetic data for generated for 10,20,50 and 100 nodes using scale-free net-

works with scale-free parameter of 2.3. Network reconstruction was per-

formed using bnlearn, ARACNE, GA with uniform prior and GA with scale-

free prior (γ = 2.3). The results avaraged over five different runs are tabu-

lated below:

Experiement Setting bnlearn ARACNE GA(uniform) GA(scale-free)
N=10, Normal data 0.625 0.710 0.633 0.675
N=20, Normal data 0.554 0.641 0.540 0.578
N=50, Normal data 0.568 0.636 0.545 0.571
N=100, Normal data 0.529 0.613 0.522 0.573
N=10, Mendes data 0.522 0.685 0.526 0.621
N=20, Mendes data 0.520 0.622 0.513 0.558
N=50, Mendes data 0.514 0.596 0.490 0.535
N=100, Mendes data 0.515 0.589 0.512 0.537

Table 5.4: AUC comparison for different learning methods

We observe in Table 5.4 that ARACNE outperforms all the learning algo-

rithms. However, we observe that GA with uniform prior performs marginally

suboptimal compared to bnlearn, and that GA with scale-free prior performs

better than bnlearn.
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5.9 PRECISION-RECALL CURVES

As yet another performance metric, we evaluated the scale-free prior against

other algorithms using precision and recall, to plot Precison-Recall curves(PRCs).

Using the defintion of NTP , NFP , NTN and NFN from section 5.2, we define

Recall and Precision as:

Recall =
NTP

NTP +NFN

(5.4)

Precision =
NTP

NTP +NFP

(5.5)

Recall is basically the fraction of true interactions correctly inferred by the

algorithm, whereas Precision is the fraction of true interactions among all

the inferred ones.

Different precision and recall values were obtained for the Bayesian inference

algorithm by varying the probability threshold, identical to that done for SN

and SP curve in previous sections. PRC for ARACNE was obtained using

different Mutual Information (MI) threshold.

This analysis was done on data generated using mendes model for 100 nodes.

The scale-free parameter of the generating network was set to 2.3. For GA,

the learning was done using a population size of 500, and the γ for scale-free

prior set to 2.3. The PRCs are shown below:

We observe in Figure 5.4 that ARACNE outperforms all other algorithms.

We also observe that GA with scale-free prior is somewhat better than

bnlearn and GA with uniform prior. However, we see that the recall for

ARACNE never reaches 1. This is because the data processing inequality

(DPI) used in ARACNE eliminates some interaction even at very low MI

threshold. A similar pattern was studied by Margolin and Basso et al. [19].
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Figure 5.4: Precision Recall Curve

5.10 REAL DATA

After testing our scale-free prior on synthetic data, we evaluated it using

real data. The HCC1954 data was used for this purpose. The details are

discussed in following subsections.

5.10.1 HCC1954 data

HCC1954 is human breast cancer cell lining data. The dataset contains

expression data for 31 different genes. The GRN for HCC1954 is not know

in advance. However, there are some very well established interaction for

this breast cancer cell. They are enumerated below (→ indicates activation

and a indicates inhibition):

1. HRG→ERBB1 [23]
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2. EGF/HRF→ERBB2/3 [12]

3. HRG→PKCα [17]

4. EGF→p38 [13]

5. MAPK signalling cascade (EGF→AKTa GSK3α) [14]

6. ERBB3→SRC [18]

7. ERBB3→PDK1 [6]

8. MEK1/2→ERK1/2 [14]

5.10.2 Results on HCC1954

GA with scale-free(SF) prior was run on HCC1954 dataset. The γ for

scale-free prior was varied from the set {1.7, 2.0, 2.3, 2.5, 3.0}. GA with uni-

form(UNI) prior and ARACNE was also run on this dataset.

In order to compare the performance we report the number of interactions

inferred among the enumerated 8 interactions in previous subsection. We

also report the total number of interaction inferred, which will tell us the

precision of algorithm.

Algorithm # True interactions inferred # Total interactions inferred
UNIFORM 3 92
SF, γ = 1.7 6 45
SF, γ = 2.0 4 41
SF, γ = 2.3 5 37
SF, γ = 2.5 5 37
SF, γ = 3.0 5 34
ARACNE 4 29

Table 5.5: Results on HCC1954 data

We observe in Table 5.5 that scale-free prior with γ = 1.7 infers the max-

imum number of true interactions. However, this is achieved at the cost

of a higher number of interactions being predicted, suggesting that it has

a lower precision. A similar pattern is observed in other γs of scale-free
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prior. Uniform prior performed worst with least number of true interactions

and maximum number of total interactions being predicted. ARACNE has

least number of interactions being predicted but also has a lower number of

true interactions being inferred. Thus, we can conclude that scale-free prior

within certain margin of error performs reasonably well (certainly better than

uniform prior).

Further, to pictorially visualise the effect of scale-free prior we plot the in-

ferred GRN for HCC1954 using both uniform and scale-free prior. The net-

works are shown below.
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Figure 5.5: Inferred GRNs on HCC1954

We observe in Figure 5.5 that GRN learned with uniform prior is very dense

with lots of edges. On the other hand, GRN learned with scale-free prior

has lesser number of edges and there are distinctly visible interaction hubs

present. Thus, deploying scale-free prior in Bayesian inference helps con-

struct networks that are rich in scale-free property.
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Chapter 6

Conclusion and Future work

In this thesis we explored into gene regulatory network reconstruction using

Bayesian inference. The conventional approach has been to use only the

information gained from the expression data, giving uniform importance to

all the candidate networks. This may correspond to bias towards unrealistic

networks. Therefore, we try to include prior information in network learning.

There are lots of expert knowledge available, particularly when it comes to

the field of gene regulatory networks. We try to incorporate one such property

called the scale-free property for network reconstruction.

We discuss the theoretical background for Bayesian inference in chapter 2.

We then motivated for the incorporation of scale-free prior in Bayesian infer-

ence for GRN reconstruction in chapter 3. The scale-free prior is formulated

for networks with a given structure. In chapter 4 we talk about the need

for sampling algorithm and the choice of genetic algorithm for network re-

construction. We also talk about the inclusion of scale-free prior in genetic

algorithm that favours learning of networks that are rich in scale-free prop-

erty.

In chapter 5 we perform various experiments with synthetic and real data

to establish the importance of scale-free prior. We show that under the

condition when networks have scale-free nature, learning with scale-free prior

performs better than learning with uniform prior. However, there is still a

large performance gap between ARACNE and Bayesian learning with scale-

free prior. We also ran our scale-free prior on HCC1954 breast cancer cell

data and find that it retrieves a significant fraction of the known interactions.

In this thesis we have shown that the use of scale-free prior in Bayesian infer-

ence can help improve network learning performance under the assumption

that the network being learned has scale-free property. This assumption is

backed by several studies discussed in chapter 3. We have shown the advan-

tage of using sampling based algorithm like GA over MCMC. The scale-free
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prior is clubbed with GA, and a quantitative study is done on network learn-

ing algorithms which was not done previously. We rank several algorithms

and find that there is substantial performance gap between ARACNE and

Bayesian inference algorithms. This motivates us for the future work of this

project and it is discussed in paragraphs to follow.

This work on priors can be extended in a number of ways. Node ordering in-

dependent scale-free prior could be a good addition to look into in future. We

have explored one feature of the network called scale-free property. There are

several other high-level network features in biological networks like network

motifs that has been discussed by Milo et al. [21]. We could think of formu-

lating priors for such features. Also, we can think of improving ARACNE’s

performance by allowing it to construct networks that favor scale-free struc-

ture. We will need to introduce scale-free scoring parameter in ARACNE’s

information theoretic approach, which will enable it to perform even better

on scale-free networks.
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