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1 Introduction

Gene regulatory networks, or transcription networks, are a way of modeling the interactions that occur
between genes in the cell. A directed edge from gene A to gene B indicates that gene A controls the rate
of production/expression of gene B by binding to its regulatory regions. In a very simplified view of such
causal relationships, correlated gene expression can imply that there is a regulatory interaction between the
two. Such networks are often inferred via wet experiments, with knocking out genes and observing changes
in expression. However, computationally predicting networks from expression data of genes in time series
form can be cheaper and less time-consuming, and help guide the direction of further wet experiments.

A problem exists of the problem at hand being an inverse problem, which is underconstrained, and
allows multiple solutions for the same set of data i.e. there is degeneracy. This arises by assuming that every
possible network over the genes (nodes) is equally likely, whereas this is not the case - biological networks are
observed to have certain properties with regard to degree distributions, occurrence of motifs and modular
structures. Giving networks with such properties a higher prior probability can help constrain the search
space to infer biologically feasible networks.

2 Review of computational biology

In the beginning of the project, a wide review of existing literature was carried out in systems biology, and
computational biology in general.

� A related problem was studied - that of using machine learning to infer the functionality and importance
of genes in a known interaction network [2].

� A review of deep learning applications in computational biology describes the use of deep learning and
convolutional neural networks in predicting mutation effects, multiple traits in the field of regulatory
genomics [3]. However, this approach has not yielded much success in systems biology/network infer-
ence, as deep learning requires lots and lots of data to learn rich, complicated models, whereas lack of
training data is one reason why network inference is hard.

� Work in [9] describes a way of validating computationally inferred networks by studying their structural
controllability properties. This could potentially form the basis for future lines of investigation into
pruning the space of inferred networks.

3 Analysis of existing methods

The SAprior method [1] was studied in detail. This method uses simulated annealing to infer the network
parameters - specifically, the in-degree distribution parameters, which is assumed to be scale-free. At each
step of the simulated annealing, networks are sampled using current and proposed parameters, and the new
network is accepted or rejected based on the simulated annealing condition.
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The expression data was synthetic in nature, generated using GeneNetWeaver software from an underlying
network constructed with certain degree constraints. The underlying gold networks were 100-gene (100-node)
networks. The advantage of using synthetic data is that the underlying ground truth network is known, and
the data is generated according to the dynamics as observed in real networks.

� DREAM3

� DREAM4

� Exponential In-degree Power-law out-degree (EIPO)

� EIPO with modules

� Power-law In-degree Power-law Out-degree (PIPO)

The DREAM3 and DREAM4 networks were based on networks in the third and fourth run of the DREAM
network inference challenges. The SAprior results were replicated for this data, and found to match with
the results obtained earlier. Some of the plots for PR curve, ROC curve and barplots for the score metric
(as defined in the DREAM challenge) [6] are shown below.

Figure 1: PR curve for various methods on DREAM3 data
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Figure 2: ROC curve for various methods on EIPO data

Figure 3: Barplots for score metric averaged over all types of data

In particular, the ordering of the SAprior method with respect to the other methods in terms of AUPR,
AUROC and score metric was found to match with the earlier obtained results.

3.1 Techniques to analyze inferred networks

The techniques were based on error metrics, keeping degree distribution of the network into account.

� The links in the inferred network were categorized based on the out-degree of the node from which
they emanate, and the in-degree of the node at which they terminate. On each of these categories, the
FPR, TPR and FNR were recorded. (2D)

� The links were categorized solely on the basis of the out-degree of their source node. (1D)
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� The links were categorized solely on the basis of the in-degree of their source node. (1D)

We had earlier categorized nodes on the basis of their in and out-degrees (taken together), but this came
with the pitfall the for each node, incoming and outgoing links had to be handled separately, which was
not meaningful, given that we are really interested in the links present/inferred. Also, for the 1D cases, the
categorization can be done either on the basis of nodes or links, as it comes out to be the same thing.

For the 2D case, heatmaps of FPR, TPR and FNR were generated as follows. Blue regions indicate the
categories for which their were no links.

Figure 4: 2D FPR heatmap

In the caption, 1350 is the number of links in the ground truth network, and 666 is the number of links
in the inferred networks.

Figure 5: 2D TPR and FNR heatmaps
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Figure 6: 1D TPR plot, in-degree wise

Figure 7: 1D FPR plot, out-degree wise

3.2 Comparison with other inference methods

We would also like to apply these analysis techniques on the results afforded by other inference methods,
and compare the analysis of the results obtained from both SAprior and the other methods. In addition to
applying the analysis techniques to the results of other methods, we also developed a variant of the analysis
techniques to directly compare SAprior and the other method.

� For the 1-D case, we plotted the error metrics on the two methods in an overlaid manner, and observed
where the two methods were making similar kinds of ‘guesses’ and ‘mistakes’.

� For the 2-D case, we took a difference of the two heatmaps (excluding the categories which had no
links in the data).
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We compared many methods against SAprior, and studied in detail the comparison between SAprior and
GENIE3 [4]. Some of the comparative plots are outlined below.

Figure 8: Comparing on DREAM3 data, in-degree FNR

Figure 9: Comparing on DREAM3 data, in-degree FPR
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Figure 10: Comparing on DREAM3 data, in-degree TPR

Figure 11: Comparing on DREAM3 data, FPR difference plot
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Figure 12: Comparing on DREAM3 data, TPR and FNR difference plot

4 Results, comparisons and future work

There were observed patterns in the plots when we analyzed the SAprior inferred networks.

� False positives were relatively sparse in the 2-D heatmap with low values of FPR. There was a single
strong peak observed in all the network types, where the in and outdegree was approximately half of
max possible in-degree and out-degree.

� True positives were present in the left half of the heatmap, with the inference methods performing
better for lower in-degree.

� False negatives were present in a large fraction of the heatmap, and were quite high for higher values
of in-degree.

� This seems to suggest that SAprior can guess links with lower in-degree correctly, and can be combined
with a method that guesses higher in-degrees well.

� FNR trends for in-degree (viewed in 1D) were similar across network types. This implies a consistent
failure of the method to pick up many edges, viewed from the perspective of in-coming links to a node.

� Similarly, TPR trends for in-degree (viewed in 1D) were similar across network types.

When comparing the SAprior method to the GENIE3 method, following were the observations.

� In GENIE3 2-D FPR heatmap, the one spike in FPR value was seen in the lower and/or right portion
of the heatmap, as opposed to the central part of the heatmap for SAprior.

� TPR was higher for lower in-degrees, but in this case the ‘trend’ was not so clear as for SAprior. It was
difficult to characterize as the behaviour was not consistent across network types as was for SAprior.

� Regarding FPR difference heatmap, the difference between FPR values was quite close to zero for
much of the heatmap. In all the three network types, SAprior had much higher FPR in one spot on
the heatmap.
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� For DREAM3 and EIPO modular data, the differences in TPR and FNR were also close to zero for
much of the heatmap. However, for EIPO data, SAprior had consistently lower TPR than GENIE3,
while having similar FNR.

The ideas derived from our work for future directions of investigation are as follows.

� Currently, SAprior only looks at the in-degrees of nodes to impose a prior. This can be extended by
imposing a prior on both the in-degree and the out-degree distribution. Since out-degrees can’t be
included in the current framework of binary programming optimization for sampling of networks, we
need to devise a new sampling approach.

� Specifically, we can look at an MCMC approach to sampling networks, after applying a prior on the
in as well as out-degree distribution. The binary programming optimization can be replaced by an
MCMC sampling. Similar work has been done in [8], which we can draw on to devise the new sampling.

� Observing that different algorithms predict different kinds of links more accurately, ensembling can
be used to combine predictions of different models, each of which identifies different network patterns.
This idea is also explored in [7] and is shown to be more effective than individual learners.

� Finally, we will also need to validate the obtained model on real data, to test its applicability to real
biological datasets.
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