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We used the Potsdam-Allahabad Hindi eye-tracking corpus to investigate the role
of word-level and sentence-level factors during sentence comprehension in Hindi.
Extending previous work that used this eye-tracking data, we investigate the role of
surprisal and retrieval cost metrics during sentence processing. While controlling
for word-level predictors (word complexity, syllable length, unigram and bigram
frequencies) as well as sentence-level predictors such as integration and storage costs,
we find a significant effect of surprisal on first-pass reading times (higher surprisal
value leads to increase in FPRT). Effect of retrieval cost was only found for a higher
degree of parser parallelism. Interestingly, while surprisal has a significant effect on
FPRT, storage cost (another prediction-based metric) does not. A significant effect
of storage cost shows up only in total fixation time (TFT), thus indicating that these
two measures perhaps capture different aspects of prediction. The study replicates
previous findings that both prediction-based and memory-based metrics are required
to account for processing patterns during sentence comprehension. The results also
show that parser model assumptions are critical in order to draw generalizations
about the utility of a metric (e.g. surprisal) across various phenomena in a language.
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Introduction
Eye movements have been successfully employed

to uncover cognitive processes that subserve natural-
istic reading. Researchers who have been studying eye
movements have been able to give us very precise mod-
els of eye movements along with establishing the link
between eye movements and the underlying cognitive
processes (see, Rayner, 1978, 1998), also see, (Clifton,
Staub, & Rayner, 2007; Vasishth, von der Malsburg, &
Engelmann, 2012).
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An eye-tracking corpus typically comprises of natu-
ralistic text with eye movement information of all the
words that make up the text. Eye-tracking corpora
have been used extensively in the area of reading re-
search to model eye movement control in English and
German (Reichle, Rayner, & Pollatsek, 2004; Engbert,
Nuthmann, Richter, & Kliegl, 2005; Kliegl, Nuthmann,
& Engbert, 2006; Kennedy, 2003; Schilling, Rayner, &
Chumbley, 1998). For example, using the Potsdam
Sentence Corpus, Kliegl et al. (2006) showed a signif-
icant effect of word frequency, word predictability and
word length on fixation durations in German. Their
work also argued for a distributed nature of word pro-
cessing (cf. Reichle et al., 2004). The Potsdam Sen-
tence Corpus consists of 144 German sentences with
fixation duration data from 222 readers. The Dundee
eye-tracking corpus (Kennedy, 2003) is another pop-
ular eye-tracking corpus for English. It contains eye-
tracking data for 10 participants on 51,000 words of
newspaper text in English.

While these corpora have played an important role
in the reading research, they have also been used to in-
vestigate processing theories using naturalistic text in
psycholinguistics (e.g. Fossum & Levy, 2012; Frank
& Bod, 2011; Mitchell, Lapata, Demberg, & Keller,

1



Journal of Eye Movement Research
10(2):4, 1-15

Agrawal, A., Agarwal, S., & Husain, S. (2017)
Role of Expectation and Working Memory Constraints in Hindi Comprehension

2010). In particular they have been used to test both
expectation-based (Hale, 2001; R. Levy, 2008) and
working memory based theories (Gibson, 2000; Lewis
& Vasishth, 2005) of sentence processing. For exam-
ple, Demberg and Keller (2008), while investigating the
Dundee eye-tracking corpus found that dependency
locality theory (DLT) (Gibson, 1998) successfully pre-
dicts reading times for nouns. They also found that an
unlexicalized formulation of the surprisal metric (Hale,
2001) predicts reading times of arbitrary words in the
corpus. Similarly, Boston, Hale, Kliegl, Patil, and Va-
sishth (2008) used the Potsdam Sentence Corpus and
found that surprisal models all fixation measures as
well as regression probability in their data. Further,
Boston, Hale, Vasishth, and Kliegl (2011) used the same
Potsdam Sentence Corpus to show that retrieval cost
(Lewis & Vasishth, 2005) is effective in modelling read-
ing times only at a higher degree of parser parallelism.
More recently, Frank, Monsalve, and Vigliocco (2013)
have constructed an eye-tracking corpora that is in-
tended to serve as the gold standard for testing psy-
cholinguistic theories for English. The data comprises
of 361 independently interpretable sentences from a va-
riety of genres; these sentences have different syntactic
constructions and therefore the text is meant to be rep-
resentative of English syntax.

While the relevance of eye movement has been
known in the psychology and psycholinguistics lit-
erature for some time, it is only recently that eye
movement data are being used in various natural lan-
guage processing applications. For example, Barrett
and Søgaard (2015a) used fixation patterns and fixa-
tion durations to automatically predict part-of-speech
categories of words in a sentence. The key insight for
this work is that reading research has demonstrated
that fixation duration can correlate with word proper-
ties such as its category, e.g. function words are gener-
ally skipped while reading. Similar insights were used
by them to also predict grammatical functions dur-
ing parsing (Barrett & Søgaard, 2015b). While the use
of fixation duration for predicting part-of-speech tags
and grammatical functions is quite intuitive, some re-
searchers have been able to exploit eye-tracking-based
features for as varied a task such as modelling trans-
lation difficulty (Mishra, Bhattacharyya, & Carl, 2013),
sentiment annotation complexity (Joshi, Mishra, Sen-
thamilselvan, & Bhattacharyya, 2014), sarcasm detec-
tion (Mishra, Kanojia, & Bhattacharyya, 2016), and sen-
tence complexity (Singh, Mehta, Husain, & Rajakrish-
nan, 2016). These works show that reading data is quite
rich and has subtle eye movement patterns can be very
useful in various applications.

Similar to the work on English and German (Boston
et al., 2008; Demberg & Keller, 2008), in a recent
work, Husain, Vasishth, and Srinivasan (2015) used
an eye-tracking corpus to investigate sentence process-
ing in Hindi. They created the Potsdam-Allahabad
Hindi Eye-tracking Corpus which contains eye move-

ment data from 30 participants on 153 Hindi sentences.
They used this corpus to show that during Hindi com-
prehension word-level predictors (syllable length, un-
igram and bigram frequency) affect first-pass reading
times, regression path duration, total reading time, and
outgoing saccade length. Longer words were associ-
ated with longer fixations and more frequent words
with shorter fixations. They also used two high-level
predictors of sentence comprehension difficulty, inte-
gration and storage cost (Gibson, 1998, 2000), and
found a statistically significant effect on the ‘late’ eye-
tracking measures.

The significant effect of storage cost in Husain et al.
(2015) is interesting because it is the first evidence in
favor of this metric in a naturalistic text using the eye-
tracking paradigm. Storage cost characterizes the effort
required to maintain predictions of upcoming heads in
a sentence. On the other hand, current evidence for
predictive processing in head-final languages such as
Japanese, German and Hindi support the predictions of
the surprisal metric (Hale, 2001). The surprisal metric is
quite distinct from the storage cost. Surprisal is defined
as the negative log probability of encountering a word
given previous sentential context. In this study we
investigate the contribution of these two expectation-
based metrics, namely storage cost and surprisal, us-
ing the Hindi eye-tracking corpus. While Husain et al.
(2015) investigated the effect of integration cost in their
study to capture working memory constraints during
sentence comprehension, we also explore the effective-
ness of an alternative working-memory cost – the cue-
based retrieval cost (Lewis & Vasishth, 2005).

Finally, we discuss the role of parser model assump-
tions, i.e. the parsing algorithm, feature set etc. on
the model predictions. In order to do this we use the
computed surprisal to model reading times of a self-
paced reading experiment (Husain, Vasishth, & Srini-
vasan, 2014). The reading time data in this SPR experi-
ment is supported by predictions made by the surprisal
metric. We therefore wanted to test if the experimental
data can also be explained by the automatically com-
puted surprisal values.

Predictive processes in
language comprehension

It has long been argued that human sentence pro-
cessing is predictive in nature (W. Marslen-Wilson,
1973; W. D. Marslen-Wilson & Welsh, 1978; Kutas
& Hillyard, 1984). Recent work in sentence pro-
cessing has conclusively established that prediction
plays a critical role during sentence comprehension
(Konieczny, 2000; Hale, 2001; Kamide, Scheepers, &
Altmann, 2003; R. Levy, 2008), but see Huettig and
Mani (2016). While the predictive nature of the pro-
cessing system has been established, the exact nature
of this system is still unclear.
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(1) Subject Relative:
The reporter who sent the photographer to the
editor hoped for a good

(2) Object Relative:
The reporter who the photographer sent to the
editor hoped for a good story

It has been proposed that a comprehensive theory
should not only appeal to predictive processing but
also be able to simultaneously account for working
memory constraints. For example, in his eye-tracking
study investigating processing difference in English
object vs subject relative clauses such as (2) and (1),
Staub (2010) finds evidence for both expectation-based
processing and locality constraints. But these oppos-
ing effects are seen at different regions in object rela-
tives. While evidence for surprisal theory is seen at the
first noun after the relative pronoun, locality-based ef-
fect (which have been argued to reflect working mem-
ory constraints) is seen as processing slowdown at the
relative clause verb. This suggests that both types of
processing accounts are needed in order to capture the
experimental data. This idea has been further corrobo-
rated by many studies (e.g. R. P. Levy & Keller, 2013;
Vasishth & Drenhaus, 2011; Husain et al., 2014). Husain
et al. (2015) also found the effect of working mem-
ory constraints (in terms of integration cost) as well as
prediction (in terms of storage cost) in a Hindi eye-
tracking corpus. However they did not test for sur-
prisal which is an important metric that captures pre-
dictability. Given that both storage cost and surprisal
quantify the predictive processes during comprehen-
sion and considering the fact that surprisal has con-
siderable support from experimental work in various
languages (including Hindi), we wanted to explore the
relative contribution of these metrics in the Hindi eye
movement data.

Surprisal

Surprisal assumes that sentence processing is accom-
plished by using a probabilistic grammar. Using such
a grammar the comprehender can expect certain struc-
tures based on the words that have been processed thus
far. The number of such probable structures becomes
less as more words are processed. Intuitively, surprisal
increases when a parser is required to build some low-
probability structure. Following Boston et al. (2008),
we compute surprisal using prefix probabilities. For a
given probabilistic grammar G, we define prefix prob-
ability at the ith word (αi) as the sum of probabilities
of all partial parses (d) until the ith words. Surprisal at
the ith word then is the logarithm of the ratio of prefix
probability before and after seeing the word. Surprisal
is always positive and in general, unbounded. In our
computation, we only take the top k parses based on
their likelihoods at each word to compute αi.

αi = ∑
all permissible derivations d permitted by G

leading to i

Prob(d)

surprisal(i) = log(
αi−1

αi
)

(3) dilli
Delhi

meediaa
media

kaa
GEN

makkaa-madinaa
Mecca-Medina

hai
is

‘Delhi is the epicentre of the media (in In-
dia).’

Table 1
Surprisal (k = 3) at different words for the sentence dilli
meedia kaa makka-madinaa hai – ‘Delhi is the epicentre
of the media (in India).’

Word Gloss αi Surprisal
dilli Delhi 1 0.00000

meediaa Media 0.99997 0.00003
kaa GEN 0.9985 0.00148

makkaa- Mecca- 0.3134 1.15865
madinaa Medina

hai is 0.2713 0.14419

In sentence (3), the α (which is defined as the sum of
probabilities of the top k parses) decreases as the sen-
tence progresses, while the negative logarithm of the
probability increases monotonically. Surprisal, thus is
the difference of this increasing series.

As mentioned previously, there is considerable
cross-linguistic support for surprisal, both from eye-
tracking data (Demberg & Keller, 2008; Boston et al.,
2008, 2011) as well as from experimental work in
(among others) English (e.g. Staub, 2010), German (e.g.
Vasishth & Drenhaus, 2011; R. P. Levy & Keller, 2013)
and Hindi (e.g. Husain et al., 2014).

Storage Costs
Storage cost (along with integration cost) is a met-

ric proposed by Gibson (2000) as part of Dependency
Locality Theory (DLT). Storage Cost characterizes the
processing load incurred as a result of maintaining pre-
dictions of upcoming heads in a sentence. To illustrate
the diverging predictions of surprisal and storage cost,
consider the following example:

(4) deepika ko
Deepika ACC

shaam se
evening INST

abhay ne
Abhay ERG

fona nahi kiyaa hai
phone not did PRES
‘Abhay hasn’t called Deepika since
evening.’
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The storage cost at deepika ko is 1 as a verb is pre-
dicted at this point in order for this sentence to end
grammatically, this storage cost remains constant as
new arguments are encountered before the verb. When
the verb (fona kiyaa hai) is encountered the storage cost
become 0. Surprisal will predict a processing cost at
encountering abhay ne because encountering a noun
phrase with an Ergative case at this position is rare (6%
of the 175 Ergative-Accusative word order instances in
the treebank had non-canonical word-order).

There is some evidence for storage cost from exper-
imental data in English (Gibson, 1998; Chen, Gibson,
& Wolf, 2005) and from the eye-tracking data in Hindi
(Husain et al., 2015).

Methodology

Following, Husain et al. (2015) we analyze the effect
of certain word-level and sentence-level predictors on
the eye-tracking measures. Below we list these depen-
dent and independent variables. Finally, we discuss the
parser details used to compute the surprisal values.

Variables
Independent Variables/Predictors. All the predictor

used in the Husain et al. (2015) study are used in this
study as well. Syllable length, word complexity, un-
igram and bigram frequencies are used as word-level
predictors. Integration cost and storage cost were the
sentence-level predictors. The details of the compu-
tation of these predictors can be seen in Husain et al.
(2015). In addition we also use lexical surprisal for each
word as a sentence-level predictor.

All predictors were scaled; each predictor vector
(centered around its mean) was divided by its standard
deviation.

Dependent Variables (Eye-tracking Measures). Again,
following Husain et al. (2015), we present analyses
for one representative first-pass measure – first-pass
reading time, and two representative measures that of-
ten show the effects of sentence comprehension diffi-
culty – regression-path duration and total reading time
(Clifton et al., 2007; Vasishth et al., 2012). First Pass
Reading Time/Gaze Duration on a word refers to the sum
of the fixation durations on the word after it has been
fixated after an incoming saccade from the left, until the
word on the right is seen. Regression Path Duration/Go-
Past Duration is the sum of all first-pass fixation dura-
tions on the word and all preceding words in the time
period between the first fixation on the word and the
first fixation on any word right of this word. Total Fixa-
tion Time is the sum of all fixations on a word.

. In our study, storage cost was computed man-
ually.1 To estimate surprisal, we used an incre-
mental transition-based parser. We implemented
our own probabilistic incremental dependency parser

in Python. The code for the parser is freely
available online: https://github.com/samarhusain/
IncrementalParser.

Parsing Algorithm and Implementation Details

We use the incremental transition-based parsing al-
gorithm (Arc-Eager) (Nivre, 2008) to parse sentences in
order to compute surprisal values for each word in a
sentence. This is similar to the approach of Boston et al.
(2011). However, unlike them we compute lexicalized
surprisal. This is because an unlexicalized dependency
parser for Hindi has very poor accuracy. We used the
sentences in the Hindi-Urdu treebank (HUTB) (Bhatt et
al., 2009) to train our parser. See Appendix for more
details on the training data and parser accuracy.

A state in a transition-based parser comprises of (a)
a stack, (b) a buffer, (c) a word position index, and
(d) the partial parse tree. Arc-Eager is a transition-
based parsing algorithm that allows four transitions to
go from one state to the other. These states are LEFT-
ARC, RIGHT-ARC, REDUCE and SHIFT. A transition
may modify the stack, and/or the parse tree and/or
may increment the index by at most one count. Not all
transitions are allowed on all states. Before the pars-
ing begins, the starting state consists of an empty stack,
the buffer contains all the words of the sentence to be
parsed, index is initialised to zero and since no struc-
ture has been formed yet, we have an empty parse tree.
As part of the parsing process, transitions are applied
incrementally till we reach a state where the parse tree
is complete, or no transition is allowed on the state.

Our parser starts with the starting state mentioned
above. In the first step, it creates a set of states that
can be achieved by applying only one transition to the
starting state. For example, we can use SHIFT to trans-
fer the first word from the buffer on to the stack. In
the second step, we create a set of states that can be
achieved by applying only one transition to those states
in the previous set, where the index is still 1. For exam-
ple, given the first word on the stack, we can either ap-
ply LEFT-ARC, RIGHT-ARC or SHIFT. REDUCE is pro-
hibited because the first word has not been assigned a
head yet. We keep applying all possible transitions to
each state, until all states have index 1. This is the set
associated with index 1.

We now use this set and repeat the above procedure
till we get a set that only has states with index 2. While
applying these transitions, we might end up with some
states on which no transitions are legal. We simply
drop such states. Thus we keep creating these sets for
each value of index starting from one.

As one would guess, the number of elements in the
set increases exponentially with the index. Therefore to
keep our algorithm tractable, we limit the size of the set
of states corresponding to each index to utmost k most

1 This information is part of the Husain et al. (2015) dataset.

4



Journal of Eye Movement Research
10(2):4, 1-15

Agrawal, A., Agarwal, S., & Husain, S. (2017)
Role of Expectation and Working Memory Constraints in Hindi Comprehension

probable elements. We use a MaxEnt model to output
probabilities of each transition we apply. The probabil-
ity of a state is simply the product of the probabilities
of all the transitions made to achieve that state.

The prefix probability corresponding to index i is the
sum of probabilities of states corresponding to the in-
dex i. Surprisal at index i is computed as the log-ratio
of prefix probability at index (i-1) and prefix probability
at index i.

Here we briefly discuss the surprisal computations
for each word in example (3). The surprisal values are
shown in Table 1 while maintaining k=3. When we see
the first word dilli, there are four possible transitions
according to the Arc-Eager algorithm. A REDUCE or
LEFT-ARC operation is not possible at the first word
hence we are left with only two possible partial parses.
The maximum number of parses we can maintain is
greater than that (since k=3), thus we do not discard
any of the potential partial parses. As a result the prob-
ability at the first word is 1, and the surprisal is 0.
As we move further in the sentence, we see the word
meediaa. At this stage, each of the two partial parses
from the previous word can give rise to multiple par-
tial parses, the total number being six. Here the sum of
the probabilities of all the six partial parses would be
1, but we only take the three most probable ones, the
sum of whose probabilities is 0.99997, giving rise to a
surprisal of 0.00003. Note that the surprisal value will
be low when the probability of remaining k parses is
higher. This happens when the probability mass is dis-
tributed less uniformly with some parses being much
more probable than the others. In other words, sur-
prisal is lower when the parser can figure out with a
greater degree of certainty, which partial parse is the
correct one. Note how in Table 1 the post-position kaa
has very little surprisal since post-positions routinely
follow nouns. However, a proper noun such as makkaa-
madinaa is not expected here (due to low frequency);
this leads to a higher surprisal value.

Analysis and Results

Linear mixed models were used for all statistical
analyses. We use the R package2 lme4 (Bates, Mächler,
Bolker, & Walker, 2015) for fitting linear mixed mod-
els.3 In the lme4 models, cross varying intercepts and
varying slopes for subjects and items was included. No
intercept-slope correlations were estimated, as data of
this size is usually insufficient to estimate these param-
eters with any accuracy.

Each word served as a region of interest. All data
points recorded with 0 ms for these fixation measure
(about 25% of the data) were removed, and the data
analysis was done on log-transformed reading times to
achieve approximate normality of residuals.

Table 2
Results of linear mixed-effects model on log first pass read-
ing. time

Estimate Std. Error t value
(b)

Intercept 5.502 0.023 237.74
Word complexity 0.003 0.003 0.87
Word frequency −0.0003 0.006 −0.04

Word bigram −0.014 0.003 −4.00
frequency

Syllable length 0.112 0.011 9.95
Integration cost 0.004 0.004 1.00

Storage cost 0.003 0.006 0.50
Surprisal 0.013 0.004 2.88

Table 3
Results of linear mixed-effects model on log regression path
duration.

Estimate Std. Error t value
(b)

Intercept 5.655 0.031 181.45
Word complexity 0.003 0.004 0.77
Word frequency -0.005 0.007 -0.75

Word bigram -0.023 0.003 -6.53
frequency

Syllable length 0.116 0.011 10.44
Integration cost 0.012 0.005 2.26

Storage cost -0.011 0.007 -1.57
Surprisal 0.002 0.005 0.52

Table 4
Results of linear mixed-effects model on log total fixation
time.

Estimate Std. Error t value
(b)

Intercept 5.619 0.030 181.32
Word complexity 0.005 0.002 1.97
Word frequency -0.016 0.007 -2.24

Word bigram -0.018 0.004 -4.41
frequency

Syllable length 0.131 0.010 12.06
Integration cost 0.001 0.004 0.39

Storage cost 0.019 0.006 2.80
Surprisal 0.005 0.004 1.14

2 version 3.1.2
3 version 1.17
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Results

Tables 2, 3, 4 show the results for the three depen-
dent measures. The result for first-pass reading time
(Table 2) showed a significant effect of both word bi-
gram frequency and syllable length; increase in sylla-
ble length leads to longer reading time, and increase
in bigram frequency leads to faster reading time. In
addition, we found a significant effect of surprisal;4 in-
crease in surprisal value leads to increase in the read-
ing time. A significant effect of bigram, word length
and integration cost was found for log regression path
duration (Table 3). Increase in integration cost leads
to increase in reading time; the significant effect of bi-
gram frequency and word length are in the expected di-
rection. Finally, barring surprisal, integration cost and
word complexity, all other predictors are significant for
log total fixation time (Table 4); these effects are in the
expected directions. In particular, increase in storage
cost leads to increase in reading time.

Discussion

The results shown in tables 2, 3, 4 are consistent with
those reported in Husain et al. (2015). Like the previous
study we find robust effect of word-level predictors,
such as word frequency, bigram frequency, and word
length. We also find a significant effect of sentence-
level processing predictors, storage cost and integra-
tion cost in total fixation time and regression path du-
ration respectively.

In this study we introduced a new sentence process-
ing measure, surprisal, as a predictor to investigate dif-
ferent eye-tracking measures. The role of surprisal had
not been explored by Husain et al. (2015). Our results
show a significant effect of surprisal on log first pass
reading time. Research on eye-tracking data in other
languages such as English (Demberg & Keller, 2008)
and German (Boston et al., 2008) have also found sig-
nificant effect of surprisal. Our work supports this
line of research. Interestingly, surprisal is a signifi-
cant predictor in addition to bigram frequency. Since
bigrams are known to capture local word predictabil-
ity due to high collocation frequency, it can be argued
that surprisal values in this study account for non-local
syntactic predictability. Experimental studies on sen-
tence processing in Hindi (e.g., Vasishth & Lewis, 2006;
Kothari, 2010; Husain et al., 2014) have found evidence
for predictive processing that can be explained through
surprisal.

Further, our results also support previous research
both using eye-tracking data (Demberg & Keller, 2008;
Boston et al., 2011) as well as experimental data (e.g.
Staub, 2010; Vasishth & Drenhaus, 2011; R. Levy,
2008; Husain et al., 2014) that have shown that both
expectation-based metric as well as memory-constraint
metric are required to explain processing in various
languages such as English, German and Hindi. The re-

sults in this study show that surprisal (which captures
expectation) as well as integration cost (which cap-
tures working-memory constraints) are independent
predictors of reading time during naturalistic reading
in Hindi. The significant effect of integration cost in our
study goes contrary to certain proposals that have ar-
gued that head-directionality in a language determines
locality vs anti-locality effects (R. P. Levy & Keller,
2013). Interestingly, while surprisal shows a significant
effect in first pass reading time, integration cost is sig-
nificant only in regression path duration. This might
point to a temporal disjunction with regard to working
memory and prediction effects, however more work
needs to be done in order to back this claim.

Recall that both surprisal and storage cost are mo-
tivated by predictive processing concerns. While sur-
prisal captures the probability of a word given previ-
ous context, storage cost models the processing diffi-
culty due to head prediction maintenance. Our results
show that these two metrics might be capturing inde-
pendent aspects of predictive processing. The corre-
lation between storage cost and surprisal is marginal
(r=-0.15). It is important to point out that so far there
is no experimental support for storage cost in Hindi
while there is support for surprisal. The reason for high
storage cost in the Hindi eye-tracking data is varied,
but it mostly happens in constructions with embedded
structures. These embeddings include both verbal em-
beddings as well as complex noun phrases. There are
some proposals that have argued for processing diffi-
culty in English center-embeddings due to prediction
maintenance (Gibson & Thomas, 1999) (also see, Va-
sishth, Suckow, Lewis, & Kern, 2010). Interestingly,
surprisal shows up significant only in first pass reading
time, while the storage cost seems to be a late emerging
effect. The exact role of storage cost in Hindi sentence
processing and its relation with surprisal will need fur-
ther investigation.

General Discussion
Our results are consistent with previous work on

naturalistic reading in Hindi (Husain et al., 2015). Re-
sults show the role of word-level predictors such as
word frequency, word bigram frequency, word length,
as well as sentence-level predictors such as storage
cost, integration cost and surprisal. Building on pre-
vious work we demonstrated that both storage cost as
well as surprisal are significant predictors of reading
time. While surprisal shows up in an early measure,
storage cost appears in a late measure. This could point
to reflecting distinct predictive processes.

4 Surprisal values are computed with a parser maintain-
ing k=10 parallel parses. This k value was chosen as the sig-
nificant effect of surprisal for first pass reading time was the
highest (t=2.88) at this value (see Appendix for more details).
For more details on parser parallelism and surprisal compu-
tation see, Boston et al. (2011).
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While the surprisal metric as computed by the
transition-based parser was found to be a significant
predictor of first pass reading time, we wanted to see
if it could also account for some of the experimental
data in Hindi. If some experimental data cannot be ac-
counted by our automatically computed metric but can
be theoretically explained by surprisal, then this will
highlight the limitations of the parsing model that we
employ. We discuss this next.

Role of the parsing model
Self-paced reading experiment data from Husain et

al. (2014) was used in order to test the prediction of
the computed surprisal on the experimental data. In
particular we use the Experiment 1 reading time data
from their study. The experiment had a 2×2 design
crossing relative clause type and verb distance from
the relative pronoun. Examples 5 shows all the four
conditions. The key manipulation was that the relative
clause verb paDhii thii ‘read’ was either ‘near’ or ‘dis-
tant’ from the relative pronoun jisne/jisko. In particular,
the near condition although bringing the verb closer to
the relative pronoun disrupted the default SOV word
order in Hindi. For example, the object kitaab ‘book’ in
Subject relative, Near (Non-canonical order) condition
appears after the RC verb.

(5) a. Subject relative, Distant (Canonical order)
vah laRkaa,
that boy

/ jisne
who ERG

/ kitaab
book

/

bahut dilchaspii se
with much interest

/ paDhii thii,
read had

/

meraa dost
my friend

/ hai
is

‘That boy, who read the book with great in-
terest, is my friend.’

b. Subject relative, Near (Non-canonical order)
vah laRkaa,
that boy

/ jisne
who ERG

/

bahut dilchaspii se
with much interest

/ paDhii thii
read had

/ kitaab,
book

/ meraa dost
my friend

/ hai
is

‘That boy, who read the book with great in-
terest, is my friend.’

c. Object relative, Distant (Canonical order)
vah kitaab,
that book

/ jisko
which ACC

/ us laRke ne
that boy

/

bahut dilchaspii se
with much interest

/ paDhaa thaa,
read had

/

bahut moTii
very thick

/ hai
is

‘That book, which that boy read with great
interest, is very thick.’

d. Object relative, Near (Non-canonical order)
vah kitaab,
that book

/ jisko
which ACC

/

bahut dilchaspii se
with much interest

/ paDhaa thaa
read had

/

us laRke ne,
that boy

/ bahut moTii
very thick

/ hai
is

‘That book, which that boy read with great
interest, is very thick.’

Figure 1. Husain et al. (2014) Experiment 1: Reading times
in log ms at the critical region (relative clause verb) for the
four conditions.

One of the key results was that Hindi native speak-
ers took longer to read the critical relative clause verb
in the short condition. This can be seen in figure 1.
Surprisal can easily explain this pattern – in the subject
relative clause the presence of Ergative case-marker on
the relative pronoun predicts a transitive verb. Since
the default word order in Hindi is SOV, an object is also
expected to appear before the verb. In the ‘near’ con-
dition the verb appears before the object thus negating
this expectation. The Hindi native speaker is therefore
surprised to see the RC verb in this position leading to
a higher reading time.5

As stated earlier, the ‘near’ conditions is expected to
see a higher surprisal at the relative clause verb. It is
therefore expected that the surprisal values computed
by the parser should be higher in the near condition
compared to distant condition. Surprisingly, we got
the exact opposite results (t(23) = 4.6, p-value = 0.0001;

5 Husain et al. (2014) also found a significant interaction
effect, but this is not critical for the discussion here. Surprisal
can also explain the interaction effect.
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mean of differences 0.14, 95% CI 0.08, 0.21). The t-test
implied that surprisal, as calculated by us, does not ac-
count for the theoretical prediction of the surprisal met-
ric in the case of these sentences. At the same time, the
surprisal values computed by the parser have a signif-
icant effect on First-Pass Reading Time during natural-
istic reading of the data discussed earlier. This shows
that certain lexical/syntactic processes are being cap-
tured by the computed metric. One possible reason for
this anomaly could be the nature of the parsing model
that we use.

Two aspects of the parser model is worth highlight-
ing here. First, transition-based models such as the
one used in this study are known to take very local
decision while ignoring the global sentential configu-
ration (Zhang & Nivre, 2011). This has been shown
to adversely affect its performance in case of word
order variability (Gulordava & Merlo, 2016). Previ-
ous work on modelling experimental data using sur-
prisal have mainly used phrase structure parsers (Hale,
2001; R. Levy, 2008). These parsers assume a prob-
abilistic phrase structure grammar (PCFG) that is in-
duced from a treebank. The grammar rules in PCFG
are directly associated with probabilities that are used
to compute prefix probabilities. These prefix probabil-
ities are then used to compute surprisal. These phrase
structure rules (and therefore the associated parsing)
can potentially capture the argument structure variabil-
ity better compared to the dependency parsing using
a transition-based system. Such an approach requires
the availability of a phrase-structure treebank which is
currently not available for Hindi.

The second aspect of the parser model relates to
the feature set and labeled parsing. Our original fea-
ture set did not have the transitivity information of
the verb. We tried adding transitivity information and
more global features like the information about its first
and second left-dependents but that led to reduction in
parser accuracy. Further we could not add information
about the dependency relation of the verb with its left-
dependents since we were doing an unlabeled parsing.
Perhaps a labeled parser might be able to capture this
notion of surprisal. We intend to investigate this in fu-
ture work.

So, while the automatically computed surprisal val-
ues do account for some variance in the eye movement
data from naturalistic reading in Hindi, it is unable
to correctly predict the experimental data discussed
above. This shows that properties such as parser al-
gorithm, feature set, grammar assumptions, etc. are
critical for the predictive power of a parsing model.
Investigating such properties will be critical in order
to account for experimental data such as Kamide et al.
(2003); R. P. Levy and Keller (2013), etc. For example,
Kamide et al. (2003) argued that German native speak-
ers are able to use the case-marking of the subject along
with the selectional-restriction of the verb to predict the
most appropriate object before its auditory onset. Sim-

ilarly, R. P. Levy and Keller (2013) have argued that in-
troducing a dative case-marked noun phrase leads to
facilitation at the verb in German. This is presumably
because the dative case-marked noun phrase makes the
prediction of the upcoming verb more precise.

Similar to our results Demberg and Keller (2008) did
not find an effect of integration cost in first pass read-
ing time.6 Boston et al. (2011), on the other hand used
an alternative metric to integration cost – retrieval cost,
and found it to be significant for all measures for higher
values of parser parallelism. One reason for the differ-
ing results in these studies could be that retrieval cost
captures working memory constraints over and above
what integration cost captures. We discuss this issue
next.

Retrieval cost: An alternative to integration cost

Similar to the study by Boston et al. (2011), we calcu-
late retrieval based on the cue-based activation model
(Lewis & Vasishth, 2005). The time taken to retrieve a
chunk from the memory depends on its activation cost
which is given as:

Ti = FeAi

The activation of a memory chunk depends on two
factors: decay and interference. This is shown in the
following equation:

Ai = Bi +∑
j

WjS ji

Here Bi is the decay term which ensures higher re-
trieval time if the word was last retrieved from the
memory in the distant past. If t j

n
j=1 denote the set of

times when the ith word was retrieved, Bi is given by:

Bi = ln(
n

∑
j=1

t−0.5
j )

The interference term ensures that higher interfer-
ence in retrieval (i.e. memory chunks with overlapping
features) implies higher retrieval cost. It is computed
as a weighted sum of S jis which represent the strength
of association.

Wj = G/ j with G = 1

S ji = Smax− ln( f an j)

where f an j is the number of chunks that have the
same feature as the jth retrieval cue. In our model, sim-
ilar to Boston et al. (2011), the part-of-speech category
acts as a feature/cue and Smax is set to 1.5. Finally, pro-
ductions in ACT-R are assumed to accrue a fixed cost

6 Actually, they found an effect but with a negative coeffi-
cient which is inconsistent with the claims of the dependency
locality theory.
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Table 5
Results of linear mixed-effect model on log first pass reading
time.

Estimate Std. Error t value
(b)

Intercept 5.501 0.023 237.72
Word complexity 0.002 0.003 0.67
Word frequency 6.750e-04 0.005 0.12

Word bigram -0.013 0.003 -4.03
frequency

Syllable length 0.110 0.011 9.90
Storage cost -9.006e-05 0.006 -0.01

Surprisal 0.016 0.004 3.75
Retrieval cost -0.004 0.003 -1.14

of 50 ms and reading a cost of 1 ms to execute. Forma-
tion of a dependency arc accrues the cost of a retrieval
along with two productions and a SHIFT operation ac-
crues only one production cost.

While testing for the effect of retrieval, we leave out
integration cost (IC) from the set of predictors since
IC and retrieval are highly correlated (r=0.53). This
is not surprising as both these measures formalize re-
trieval cost at the integration site. Also, like Boston et
al. (2011), we only consider points where the retrieval
cost is non-zero and thus an effect of retrieval cost is
expected.

The overall results are quite similar to those obtained
earlier.7 Interestingly, while retrieval cost is not sig-
nificant for any of the three dependent measures for
k=10; when the value of k is increased to 25, retrieval
cost becomes marginally significant in the case of RPD
(table 8). This seems to validate the results of Boston et
al. (2011) who also found significant effects of retrieval
cost for higher parser parallelism. However, unlike
them we did not find a significant effect of retrieval cost
for all measures. The results without excluding points
with zero retrieval cost are also very similar to the ones
mentioned below, hence we skip them for brevity.

How much (cross-linguistic) generalization can be
drawn from our work and the eye-tracking corpus-
based investigation in English and German? All these
studies have found the effect of surprisal as well as
memory costs on various eye movement measures.
However, the exact measures for which these metrics
are significant differ. For example, in this study we
find the effect of surprisal only in first pass reading
time, while Boston et al. (2011) found the effect of (un-
lexicalized) surprisal for both early and late measures.
In Demberg and Keller’s (2008) study, the lexicalized
surprisal does not show up in the results for first pass
reading time. So, while there are some broad agree-

Table 6
Results of linear mixed-effect model on log regression path
duration.

Estimate Std. Error t value
(b)

Intercept 5.654 0.031 181.98
Word complexity 0.002 0.004 0.55
Word frequency -0.004 0.007 -0.64

Word bigram -0.023 0.003 -6.58
frequency

Syllable length 0.113 0.011 10.11
Storage cost -0.015 0.007 -2.17

Surprisal 0.004 0.005 0.75
Retrieval cost 0.007 0.005 1.42

Table 7
Results of linear mixed-effect model on log total fixation time.

Estimate Std. Error t value
(b)

Intercept 5.618 0.030 182.30
Word complexity 0.004 0.002 1.68
Word frequency -0.014 0.006 -2.09

Word bigram -0.017 0.004 -4.26
frequency

Syllable length 0.129 0.010 11.85
Storage cost 0.016 0.006 2.46

Surprisal 0.011 0.004 2.33
Retrieval cost -0.006 0.004 -1.52

Table 8
Results of linear mixed-effect model on log regression path
duration (k=25).

Estimate Std. Error t value
(b)

Intercept 5.656 0.031 180.98
Word complexity 0.002 0.003 0.61
Word frequency -0.006 0.007 -0.81

Word bigram -0.024 0.003 -6.79
frequency

Syllable length 0.115 0.011 10.27
Storage cost -0.014 0.007 -1.89

Surprisal 0.0001 0.005 0.03
Retrieval cost 0.009 0.004 1.91

7 The significant effect of storage cost in Table 6 is inconsis-
tent with the results discussed previously. We have no expla-
nation for this effect.
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ment between these results, because the modeling as-
sumptions with respect to treebank annotations, pars-
ing algorithm, nature of the predictors, parsing feature
set, etc. are so varied, it is difficult to make any specific
claims about cross-linguistics generalizations. A much
more controlled modeling setup is needed in order to
make any reasonable claim.

Conclusion

In this work we used the Potsdam-Allahabad Hindi
eye-tracking corpus to investigate the role of word-
level and sentence-level factors during sentence com-
prehension in Hindi. We find that in addition to word-
level predictors such as syllable length and uni- and
bi-gram frequency, sentence level predictors such as
storage cost, integration cost and surprisal significantly
predict eye-tracking measures. Effect of retrieval cost
(another working-memory measure) was only found
for higher degrees of parser parallelism. Our work
points to the possibility that surprisal and storage cost
might be capturing different aspects of predictive pro-
cessing. This needs to be investigated further through
controlled experiments. Our study replicates previous
findings that both prediction-based and memory-based
metrics are required to account for processing patterns
during sentence comprehension. The results also show
that model assumptions are critical in order to draw
generalizations about the utility of a metric (e.g. sur-
prisal) across various phenomena in a language.
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APPENDIX

In this section we discuss the technical details
of the transition-based parser along with the data
used in the study. We first discuss the data. Fol-
lowing this we list the feature specification file of
the transition-based parser. Finally, we discuss the
parser accuracy. The parser code and the eye-tracking
data can be downloaded from: https://github.com/
samarhusain/IncrementalParser

Data

Dependency treebank. We used the sentences in the
Hindi-Urdu treebank (HUTB) (Bhatt et al., 2009) to
train our parser. The HUTB contains the dependency

parse for around 12000 sentences along with mor-
phological information (part-of-speech tag, category,
lemma, case marker, chunk information, tense-aspect-
modality and type of sentence) about each word in the
treebank.

Eye-tracking corpus. We use eye-tracking data from
the Potsdam-Allahabad Hindi Eye-tracking Corpus
which contains different eye-tracking measures for 153
Hindi sentences. These sentences were selected from
the HUTB treebank. The sentences were read by thirty
graduate and undergraduate students of the University
of Allahabad in the Devanagari script (Husain et al.,
2015).

Feature Set
We have used a morphologically rich incremental

feature set that includes the form, lemma, part-of-
speech tag, category, tense-aspect-modality and case
markers along with the chunking information of the
top two elements of the stack and the top element of the
buffer. We have not used the transitivity information of
verbs and the gender, number and person of the words
because they reduced the accuracy of the parser. The
exact feature set used for the parser in the MaltParser
format is given below:

S p l i t ( InputColumn (FEATS WITHOUT GNP,
Stack [ 0 ] ) , ’ | ’ ) ,

S p l i t ( InputColumn (FEATS WITHOUT GNP,
Input [ 0 ] ) , ’ | ’ ) ,

InputColumn (FORM, Stack [ 0 ] ) ,
InputColumn (FORM, Input [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 0 ] ) ,
InputColumn (POSTAG, Input [ 0 ] ) ,
InputColumn (CHUNK ID, Stack [ 0 ] ) ,
InputColumn (CHUNK ID, Input [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 1 ] ) ,
InputColumn (POSTAG, pred ( Stack [ 0 ] ) ) ,
InputColumn (POSTAG, head ( Stack [ 0 ] ) ) ,
InputColumn (POSTAG, ldep ( Input [ 0 ] ) ) ,
InputColumn (CPOSTAG, Stack [ 0 ] ) ,
InputColumn (CPOSTAG, Input [ 0 ] ) ,
InputColumn (CPOSTAG, ldep ( Input [ 0 ] ) ) ,
InputColumn (FORM, ldep ( Input [ 0 ] ) ) ,
InputColumn (LEMMA, Stack [ 0 ] ) ,
InputColumn (LEMMA, Input [ 0 ] ) ,
Merge ( InputColumn (CHUNK ID, Stack [ 0 ] ) ,

InputColumn (CHUNK ID, Input [ 0 ] ) ) ,
Merge ( InputColumn (CPOSTAG, Stack [ 0 ] ) ,

InputColumn (CPOSTAG, Input [ 0 ] ) ) ,
Merge ( InputColumn (POSTAG, Stack [ 0 ] ) ,

InputColumn (POSTAG, Input [ 0 ] ) )

We also tried our study with a simpler feature set
which was used by Nivre (2008); Boston et al. (2008).
The unlabeled accuracy for Hindi we obtained using
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this feature set was very low compared to what we get
using the morphologically rich feature set. Also, the
surprisal values we got using this feature set did not
achieve a significant coefficient in any of the regression
analyses. The details of this simplified feature set are
given below:

MERGE( InputColumn (POSTAG, Input [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 1 ] ) ,
InputColumn (POSTAG, Stack [ 2 ] ) )

MERGE( InputColumn (POSTAG, Input [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 1 ] ) )

MERGE( InputColumn (POSTAG, Input [ 0 ] ) ,
InputColumn (POSTAG, Stack [ 0 ] ) )

Parser Accuracy
Parser accuracy becomes critical in order to compute

reliable surprisal values. The Unlabeled Attachment
Score (UAS) for our parser is close to 88%. UAS is the
proportion of words that are correctly attached to their
parent. Using a simpler feature set (Boston et al., 2008)
lead to lower accuracy (68%). UAS varies slightly with
the value of k (which is the number of partial parses
maintained in parallel), there is no clear increase in the
accuracy as k increases. Surprisal values are computed
using k = 10. This is done because the mean estimate of
surprisal in the model (for FPRT) reaches maximum at
k = 10.

The mean estimates and the standard deviations of
the coefficient of surprisal in the linear mixed-effects
regression for log(FPRT) for different values of k are
given in the Table 9. As can be seen surprisal is signif-
icant for almost all values of k. Among the coefficients
of surprisal in the case of First Pass Reading Time, we
note that while the standard deviation of the estimate is
nearly constant, the mean estimate first increases with
k, reaches a maximum at k = 10 and then starts decreas-
ing again. Surprisal was not a significant predictor for
both log(RPD) and log(TFT) for any value of k. We
therefore do not show those figures here. For compari-
son we also show the retrieval cost figures (table 10) at
different values of k for regression path duration. We
see here that retrieval cost reaches marginal significant
for k=25, while it remains insignificant for lower k. For
all other measures retrieval cost remains insignificant.

References
Barrett, M., & Søgaard, A. (2015a). Reading behavior predicts

syntactic categories. In Proceedings of the nineteenth con-
ference on computational natural language learning (pp. 345–
349). Beijing, China: Association for Computational Lin-
guistics.

Barrett, M., & Søgaard, A. (2015b). Using reading behavior
to predict grammatical functions. In Proceedings of the sixth

Table 9
Coefficient of surprisal for log first pass reading time for dif-
ferent values of k.

k Estimate Std. Error t value
(b)

1 0.006 0.003 1.75
2 0.009 0.003 2.62
3 0.010 0.004 2.55
4 0.010 0.004 2.5
5 0.011 0.004 2.8
10 0.012 0.004 2.88
15 0.011 0.004 2.65
20 0.010 0.004 2.38
25 0.009 0.004 2.2

Table 10
Coefficient of retrieval cost for log regression path duration
for different values of k.

k Estimate Std. Error t value
(b)

2 0.010 0.006 1.75
3 0.010 0.005 1.79
4 0.008 0.005 1.50
5 0.007 0.005 1.41
10 0.007 0.005 1.42
15 0.007 0.005 1.40
20 0.007 0.004 1.59
25 0.009 0.004 1.91

workshop on cognitive aspects of computational language learn-
ing (pp. 1–5). Association for Computational Linguistics.
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