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Abstract

This thesis aims to learn regulatory interactions between genes and Tran-

scription factors and Environmental factors using Markov Logic Networks.

In this project, we develop a joint model which would predict the similarity

of genes and the regulatory network jointly. Intuitively we use the bijection

between similarity of genes and regulatory links: similarity of genes implies

similar regulatory links and vice versa.

At the later stage of the project, artificial regulatory network was created

from which data was generated and detailed experiments were done to un-

derstand the problem at hand.
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Chapter 1

An Introduction

In this project, we try to address a biological problem using data driven ap-

proaches. For the purpose of making the reader understand, we will explain

very lightly some of the biological terms which are relevant here. Inside the

cells we have chemical entities called proteins which are vital for the proper

functioning of the cell. Concentration of proteins in the cell varies over

time. Proteins formation process is triggered in another important chem-

ical present inside cells called genes. Biologically speaking, genes are ’ex-

pressed’ to form proteins. Expression of gene is regulated by yet another

class of compounds present in cells known as Transcription Factors or in

short TFs. Presence/Absence of some TFs induces gene expression where as

presence/absence of some TFs inhibits gene expression. This project deals

with inferring the regulatory network of genes and TFs from the data.

There are some genes which are regulated by same set of TFs. Generally

these are those genes which perform similar functions in the cell. Hence it

makes sense if we try to club genes into clusters and infer links of those clus-

ters. Clustering the genes will serve two purposes. On one the one hand

it will reduce the complexity of the problem as we will have less number of

nodes in our network. The other advantage is that, the biological data is

noisy. This clubbing together will help to cancel out the noise from the data.

If we are able to predict how genes are regulated in the body then it would

be possible to tweak the regulatory network so as to get the desired changes

in the biochemical processes.

Genes are said to be corregulated if they are acted upon by same set of tran-

scription factors in a similar way. Note that if genes are corregulated then

they will be have identical links. Moreover if two genes have identical links

then they will be be corregulated. Hence learning the regulatory network

could in principle be enhanced by feeding in the similarity information and
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learning the similarity could be enhanced by feeding in the regulatory net-

work knowledge. Hence we propose a joint model which learns the regulatory

network with the similarity of genes.

In chapter 2, we do a literature review of some of the approaches taken for

solving this problem. We also look at the canopy soft clustering technique.

We use it to feed in partial information about the similarity of genes in our

joint model. In chapter 3, we introduce Markov Logic Networks and briefly

describe the workings of it. We also describe a previous MTP work done in

this institute in which a simple MLN network had been developed and it does

regulatory network learning from it.In chapter 4, we describe our different

formulations for the joint model for capturing gene similarity and regulatory

network learning. In chapter 5 we describe the artificial regulatory network

generation and data generation framework. Later in this chapter we describe

various experiments and their results. In chapter 6, we summarize the work

done in this MTP and give a overview of all the things we tried in this project.
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Chapter 2

Literature Review

In this chapter we will glance through various techniques which have been

tried for learning subcellular regulatory networks.This chapter has four sec-

tions.EGRIN, ARCANE and some other common methods are discussed in

the first section. In the second section, we discuss how to reduce the complex-

ity of the problem by describing a clustering algorithm named cMonkey.It

was developed for use with inferelator, which learns the regulatory network

which we describe in the third section. In the fourth section, we discuss the

canopy approach to cluster multidimensional data.

2.1 Learning Subcellular Regulatory Networks

The main advantage in applying systems approach to the biological processes

is to be able to predict the behavior of the biological process if we make a

small change in environmental conditions or genes. Broadly speaking, there

are two groups of algorithms for inferring the biological regulatory network.

In the first group of techniques, we will see those which learn a network of

unit less regulatory influences. The second group of algorithms differ from

the first group in that it also produces some dynamic parameters, using which

one can predict expression levels of nodes in different conditions. Below are

described some of the popular algorithms for the first group.

• ARCANE: Using ARACNE, transcriptional regulatory network for

mammalian cells was inferred. The algorithm is based on an impor-

tant equality from data processing which says that if Ga interacts with

Gb which in turn interacts with Gc and there is no direct interaction

between Ga and Gc then mutual information between the end nodes

(which are Ga and Gc) is less than minimum of mutual information be-

tween connecting edges ( which are (Ga,Gb) and (Gb,Gc)). Mutual in-

formation between each pair is stored as weights between them. Those
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2.1 Learning Subcellular Regulatory Networks 4

weights which are below a threshold are removed from the network.

Due to thresholding, weak interactions among the triplets are dropped.

• Context Likelihood Relatedness: Using this technique, transcrip-

tional regulatory network for the organism E.coli was inferred.On the

basis of mutual information between a pair of genes(or a gene and a

TF), a score is calculated for each pair. After calculating the mutual

information between genes and their regulatory agents, it then calcu-

lates likelihood of the mutual information in this network’s context.

It also calculates background distribution of mutual information and

using that distribution it asserts those mutual interactions to be most

probable, which have mutual information value substantially greater

than the background distribution.

In the second group of methods, EGRIN gives the best results.Below we

describe EGRIN which ,using the learnt dynamic parameters, predicts the

expression level of genes in novel conditions.

EGRIN: Environmental and Gene Regulatory Influence Network (EGRIN)

is a sequential application of mainly two algorithms so as to infer the regu-

latory network. EGRIN was successfully used to infer regulatory network of

Halobacterium Salinarium.

At first, geneome sequencing of the organism concerned is done and on the

basis of structural similarities between genes , different functions are assigned

to them. It is followed by generation of data. Enviromental conditions were

purturbed and expression level of genes are measured using microarrays.

Next step is reducing the data complexity. Cmonkey algorithm is used to

find the coregulated genes and those genes are then clustered together. At

last inferelator is used to construct a dynamic network model from the clus-

tered data.

Using following procedure, the regulatory network for H. Salinarum was in-

ferred. cMonkey clustering was used to cluster 2400 genes. It clustered

1929 genes out of 2400 into 200 biclusters. Semantically, these biclusters

contain genes which are corregulated under certain conditions. On this clus-

tered data, inferelator was run and regulatory network was constructed. The
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2.2 Cmonkey Biclustering Algorithm 5

output is essentially a set of equations which takes as input changes in en-

vironment and expression level of TFs and outputs the gene expression level

of genes. The inferred expression level had a high degree of correlation with

the actual expression level of gene.Now we will study in some depth the two

algorithms used by EGRIN which are Cmonkey and Inferelator.

2.2 Cmonkey Biclustering Algorithm

Clustering of genes is done for various reasons. Major reason being that

in biological networks, the number of free paramenters is much higher than

the dimensionality of data. So clustering the genes directly reduces the free

paraments and thus helps in a major way. The issue being that in general

signal to noise ratio is high in biological experimental data. Clustering aver-

ages out the noise and imrpoves signal to noise ratio. The most natural way

for clustering is to choose as metric the correlation coefficient between the

expression of genes over different conditions. There is however, one issue is

that some genes could have highly correlated gene expressions just by chance.

So if two genes have correlated gene expression doesn’t necessarily mean that

they are corregulated. On the other hand, if two genes are co-regulated, then

by very definition of co-regulation, their expression in different conditions will

be very similar. To enforce that genes which are to be clustered in a cluster

must have co-regulation, one could use the information about their common

tasks, common metabolic pathways, cis-regulatory motifs etc.

However, every biological system is multi functional. This means the genes

are co-regulated only in some set of conditions and not over all conditions.

For clustering algorithm to encorporate this feature, individual genes must

be put in different clusters on the basis of data obtained from a subset of

environmental conditions. This type of clustering is also termed as biclus-

tering.

cMonkey bicluster model: cMonkey biclustering model starts with ini-

tializing biclusters as seeds. In subsequent iterations genes are added and

removed. It is modeled on Markov chain process and so the gene addition

and removal is solely dependent on the current state of the bicluster. In short
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2.3 Inferelator 6

the algorithm can be summarized as follows [3].

• A new bicluster is seeded with one gene.

• motifs are searched in the bicluster

• Conditional probability that each gene being a member of the chosen

bicluster is calculated

• Using the conditional probability, moves are performed(gene is added

or removed)

• In case the cluster has changed, control goes to step 2, otherwise to

step 1.

There are few things to note about seeding a bicluster with a gene. Seeding a

bicluster is done until number of biclusters reach a pre-specified limit. Genes

which are not present in any bicluster are the ones eligible to be seeded into

a new bicluster. Ones seeded, biclusters improve by using the joint likelihood

conditions: clusters with high probability of membership are add and those

with low probability are dropped. Size of the cluster and the overlap of the

clusters are also checked using mathematical constraints. Now we will discuss

Inferelator, the regulatory network generation module of EGRIN.

2.3 Inferelator

Inferelator is an algorithm which outputs a function which as input expres-

sion level of environmental factors , expression levels of TFs and interactions

between them and outputs expression level of genes. It uses standard re-

gression along with L1 regularization. One of the major plus points of this

algorithm is that it can be applied for obtaining steady state conditions as

well as for kinetic expression levels.

Model Formulation: Expression level of a gene/cluster say y is assumed

to be a function of a vector of levels of TFs and other environmental factors

say X,X = (x1, x2, ........, xn). Inferalator selects following kinetic equation to

relate X and y:
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2.3 Inferelator 7

τdy/dx = −y + g(β ∗ Z) [1]

• y: gene/cluster expression level

• X: vector of levels of TF and environmental factors

• Z: function of regulatory factors.

• β: Positive βi implies inductive effect of factor Xi on y, negative βi

implies inhibitive effect.

• τ : time constant of the level of y in absence of any external influences.

• Function g(p):

– g(p) = p if min(y) < p < max(y)

– g(p) = min(y) if p < min(y)

– g(p) = max(y) if p > max(y)

It is clear from equation [1] that both steady state experiment or a time

series experiment are allowed experimental conditions. Z is used to model

interaction between the different enviromental factors and TF. One could

formulate various functions like XOR,OR using Z.

After formulating the model, we turn our attention to learning the param-

eters. We present a high level pseudocode representation of the algorithm [3]:

• ”For each bicluster k

– For each (TF ti: transcription factor ti)

∗ Update the list of best single influences

∗ For each TF tj: update the best interaction list(min[ti,tj])

– select from predictors and estimate model parameters with L1-

shrinkage/CV

– Model has been generated for bicluster k. Store it.

• Club together individual bicluster models into one global network”
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2.4 Efficient Clustering of High-Dimensional Datasets 8

2.4 Efficient Clustering of High-Dimensional

Datasets

This section describes a two step approach to cluster the high dimensional

data.The main idea is that one reduces the domain of potential matches for

clusters using a cheap metric. This results in overlapping clusters called

canopies. Second step involves using a more time expensive metric for clus-

tering on objects belonging to same canopy.Since the domain of object is

of significantly low size for the second step, with canopies, one can cluster

high-dimensional data sets which was earlier not possible to do.

Two different metrics are used in this algorithm: a less time consuming

similarity metric and a more time expensive and accurate similarity metric.

Intuition behind the algorithm is that if those objects which are sufficiently

different from each other can’t be in the same clusters. So it makes sense

to use the expensive clustering metric only on those objects which are not

so different. There is one important concern regarding the loss of accuracy.

For this algorithm to produce same output as that by using the more ex-

pensive and accurate metric of the two, it is imperative that all elements of

any actual cluster must be a subset of atleast one canopy. For the second

stage, one could use any of the stable clustering algorithms like k-means or

agglomerative clustering with the restriction that distance between points

which donot share a single canopy are set to infinity.

For this project, we needed the first step of the canopy algorithm, which is

formation of overlapping subsets or canopies.

2.4.1 Inverted Index: A Cheap Metric

Inverted index is one of the cheap metrics which can be used as the cheap

and approximate similarity metric to be used for canopy generation.For doc-

uments as examples with tokens being their boolean features, one can access

list of all documents containing a token using inverted index. If we want to

find all documents similar to a particular query we can first find all docu-

ments which have atleast one token of the query using inverted index. We
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2.4 Efficient Clustering of High-Dimensional Datasets 9

can then use the actual distance metric to calculte the best match over this

reduced set of documents. We can do this because a vast majority of docu-

ments which don’t contain a single similar token will never be similar to it.

So using inverted index one gets rid of all irrelevant documents and is left

with a small set of potentially similar documents.So we see that inverted in-

dex can easily be used to efficiently calculate a distance metric that depends

on simply the count of common tokens between the documents.

2.4.2 Canopy Creation Algorithm

We describe below the steps to create canopies. We need two thresholds T1

and T2, with T2¿T1. ( They can be optimally found out by using cross

validation )

• Select a point p as the center for a new canopy from the list.

• Measure distance of the point from all other points using a cheap dis-

tance metric.

• All the points which are atmost T1 distance away from p are put in

that canopy.

• All those points which are atmost T2 distance away from p are removed

from the list.( They are ineligible to be canopy centers)

• Repeat until the list becomes empty.
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Chapter 3

Markov Logic Networks

For the entirety of the project we rely on MLN as our model framework and

experiment with various models which we create in it. To begin with we

reciprocate the results of a previous MTP done on the same problem[4]. We

take its model as a Basic Model and do some more analysis on it which we

describe in later sections. In the next chapter we describe our joint model

which jointly infers the links and identifies corregulated genes. First we go

to the basics of MLN.

3.1 Basics of MLN

A first-order knowledge base (KB) is a set of sentences or formulas in first-

order logic (Genesereth & Nilsson, 1987).There is hardness in terms of realiz-

ability of a world defined by first-order logic which means, even on a voilation

of one formula within the KB, the probablity of the world goes to zero. But

real world scenarios don’t have the luxury of boolean states. Hence Markov

Logic Network was developed where a world has a finite real probablity of

existance based on the number of formulae satishfied in its KB and also on

the importance of the formulae quantified by their weights. Formula with

high weights on getting untrue reduce the probability of world being true by a

bigger margin than the formulae with low weights. If one changes the ground

values of instance predicates so that more and more formulae become true,

then the probablity of world increases(provided the weights of rules being

made true are positive). Definition of Markov Logic Networks as proposed

by Richardson and Domingos is [6]:

Definition 1: A Markov Logic Network L is a set of pairs (Fi, wi), Where Fi

is a formula in First-order Logic and wi is a real number. Together with a
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3.1 Basics of MLN 11

Figure 3.1: Example of a First-Order Knowledge Base and MLN, (Richard-
son, Domingos 2005)4

finite set of constants C = {c1, c2, ......, c|C|}, it defines a Markov Network

ML,C as follows:

• ML,C contains one binary node for each possible grounding of each

predicate appearing in L. The value of the node is 1 if ground atom is

true, and 0 otherwise.

• ML,C contains one feature for each possible grounding of each formula

F i in L. The value of this feature is 1 if the ground formula is true and

0 otherwise. The weight of the feature is wi associated with Fi in L.

The probability of a particular world x which is specified by ground Markov

Network ML,C comes directly from definition 1 as:

P (X = x) = 1
Z
exp(

∑
iwini(x)) = 1

Z
φi(xi)

ni(x)

Where ni(x) is the true number of groundings of φi in x, xi is the truth value

of atoms appearing in φi and φi(xi) = ewi . One could also look at ML,C in

a graphical perspective. This can be done directly applying the definition 1.
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3.2 Learning Subcellular Regulatory Network: Basic Model 12

Nodes in the graph will be the ground atoms/predicates. There will be an

edge between two node if the corresponding ground atoms come in atleast one

ground instance of a formula. If we have the ground network and a database

pertaining to that network, one could calculate the weight of different rules.

Note that higher the weight, higher is the probability of the rule being true.

3.2 Learning Subcellular Regulatory Network:

Basic Model

This model was developed in a previous MTP work by Alok Singhal at IIT

Delhi. In this model MLN was used to learn the regulatory network for

the organism H. Salinarium. H. Salinarium was picked because there are

established works on the same theme and results of those works are easily

replicable. In particular, we have EGRIN which is sequential application of

cMonkey followed by Inferelator algorithm which learnt the regulatory net-

work of H. Salinarium which served as a good benchmark for them.

Dataset Description: There are 2400 genes and 280 conditions in Salinar-

ium dataset. Out of 280, 100 are TFs and rest being environmental factors.

MLN in its current state works well with only binary data. Hence threshold-

ing was done on the expression level of genes ,TFs and environmental factors

to make them binary valued.

For the problem mentioned, following first order KB was defined:

1. ExpressesTF(+t, c) Expresses (+g, c)

2. ! ExpressesTF(+t, c) Expresses (+g, c)

3. ! Expresses(+g, c)

First rule says that if Transciption factor (TF) t is active in a condition c

implies that gene g should be active in that condition. This captures the

activating nature of TFs vis-a-vis Gene expression. Second rule says that

when TF t is inactive in a condition, gene g should be active. This captures

the inhibitory effect of TFs. Third rule says that in general genes should be
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3.2 Learning Subcellular Regulatory Network: Basic Model 13

inactive.

+ sign indicates for each variable of that type, a separate weight was learnt.

For example in the first rule, there is + sign of t and g. So for every TF

t, and gene g, a weight was learnt over all the conditions. It makes sense

because if for some TF t, gene g, weight comes out to be high, then MLN

framework says that if TF t is active then it is highly probable that gene g is

also active. We instantly recognize the role of weight here as an indicator of

the presence of an actvating link from TF t to gene g. Lets do some numer-

ical analysis on this MLN. Having 2400 genes,300 conditions and 100 TFs,

we have 105 weights to be learnt with 108 ground clauses. At that point of

time, there were no open source MLN implementations which could handle

that number of clauses. In order to make problem solvable, they reduced

the data complexity by clustering the genes using cMonkey clustering. MLN

framework was then applied on clusters rather than on genes. Expression

levels of cluster centers are just the mean of the expression levels of member

genes.

For learning weights, discriminative learning was used. It was used as op-

posed to generative learning since evidence nodes were apriori known. (Ev-

idence nodes are TF nodes with query nodes being gene nodes). Aim is

prediction of expression levels of gene clusters given expression levels for TFs

and other environmental factors. Let X denote the set of evidence atoms.

Let Y be the query atoms, then conditional likelihood of Y given X is:

P (Y |X) = 1
Zx
exp(

∑
j∈Gy

wjgj(x, y))

• Gy: set of clauses with atleast one query atom in it.

• wj : weight of jth clause

• gj(x, y): gj(x, y) = 1 if jth clause becomes true when Y takes value y

and X takes x otherwise 0.

Using MAP inference one can find the most probable state of Y given X. In

their case out of 278 conditions, discriminative learning was used to learn
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3.2 Learning Subcellular Regulatory Network: Basic Model 14

from first 250 conditions and last 28 conditions were used for testing. After

having learnt the regulatory network, one can get the activity level of genes

in a novel condition using the expression levels of TFs and environmental

conditions in that condition.

3.2.1 Results

We have done all our experiments, including the joint model and the im-

proved basic model on Halobacterium dataset. We created the model in

Deepdive and reciprocated the results. We got 73.5 % accuracy on cluster

activity prediction. Going further from there, we did an eight point cross

validation,ran the model on clusters as before and calculated the genewise

accuracy. It came out to be 69%

One may observe that rule 1 and rule 2 are creating a subtle problem. Prob-

lem is that we don’t have a semantic explanation for negative weights for

rules 1 and rule 2. This also can cause our model to differ from the real

data as we are adding unnecessary degeneracy in the model. So at the later

half of the project we decided to stick with only one of the rules. This way

the negative weights immediately meant the other rule and very low weight

meant TF doesn’t affect genes. It will be explicitly mentioned which rules

are picked. If not mentioned, all rules can be safely assumed to be present.
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Chapter 4

A Joint Model for Similarity Pre-

diction and Regulatory Network

Learning

4.1 Motivation and Predicate Definitions

We saw in previous chapter that due to the enormity of data, genes were

clustered and subsequently the clustered data was fed into a MLN framework

to get the regulatory network. Since the similarity between genes depends

upon the underlying links to Transcription Factors, it is but natural to come

up with a model which would learn the simialrity and the links jointly. For

that to work we will need to relate links to similarity. This necessitates the

introduction of new predicates. Note that in the previous simpler model we

were no predicates for links or for similarity. Strength of links were inferred

from the weight of rules. Below are the predicates with their meaning

• Active(g,c) : gene g is active in condition c

• ActiveTF(t,c): TF t is active in condition c

• LinkedA(t,g): TF t activates gene g

• LinkedI(t,g): TF t inhibits gene g

• SimilrGn(g1,g2): Gene g1 is similar to gene g2

From the data we are getting values of predicates Active and ActiveTF.

LinkedA, LinkedI and SimilrGn are almost hidden.(SimilrGn(g,g) is True).

We will see in the next section that we will achieve partial observability for

SimilrGn predicate by applying the concept of canopies.
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4.2 Partial Obseravability of SimilrGn Predicate 16

Figure 4.1: Figure showing genes as dots, and circles enclosing them as
canopies. Those gene pairs which don’t share atleast one canopy are set
to false.

4.2 Partial Obseravability of SimilrGn Pred-

icate

Intuition behind this section is that if the gene expression of some gene pair

is very different then they can’t have the same set of TFs affecting them. So

the idea is to form canopies of genes. For those gene pairs which donot occur

in any common canopy, we set the SimilrGn predicate to false as can be seen

in Fig [4.1]. For other gene pairs, it is unknown.

For each gene we construct a vector of length equal to number of conditions.

This vector contains the gene expression of that gene over those conditions.

We use correlation coefficient as a metric for constructing canopies with our

two thresholds being 0.2 and 0.4.

4.3 Model 0: Basic Model in Terms of New

Predicates

This is a model which is conceptually equivalent to the Basic model. In

this model we formulate rules only with LinkedA and LinkedI predicates
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4.3 Model 0: Basic Model in Terms of New Predicates 17

Figure 4.2: LinkedA is inferred when gene as well as TF is active in a con-
dition. LinkedI is inferred when TF is active but gene is inactive in a con-
dition. Finally a gene is active if a TF which activates it is active in a
condition.Similarly a gene is inactive if a TF which inhibits it is active in a
condition.

and we do not touch similarity in this model. LinkedA and LinkedI pred-

icates are inferred from Activity of genes (Active(g,c)) and activity of TFs

(ActiveTF(t,c)) as can be seen from figure [4.2]. Below are the rules of the

model:

1. Active(g,c) ∧ ActiveTF(t,c) => LinkedA(t,g) +(t,g)

2. !Active(g,c) ∧ ActiveTF(t,c) => LinkedI(t,g) +(t,g)

3. ActiveTF(t,c) ∧ LinkedA(t,g) => Active(g,c) +(t,g)

4. ActiveTF(t,c) ∧ LinkedI(t,g) => !Active(g,c) +(t,g)

5. !Active(g,c) +(g)

In the first rule LinkedA is inferred. a TF activates a gene g if when gene g

as well as TF t are active in a condition. In second rule, LinkedI is inferred.

TF t inihibits gene g when TF t is active but gene g is inactive in a condition.

Next two rules are about inferring activity of gene. Gene g is active if there

is a TF t which activates it and TF t is active.Gene g is inactive if there is

a TF t which inhibits it and TF t is active.
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4.4 Model 1: Joint model, Inferring Similarity from Activity 18

Figure 4.3: LinkedA is inferred when gene as well as TF is active in a condi-
tion. LinkedI is inferred when TF is active but gene is inactive in a condition.
Genes are similar when they are either both active or both inactive in a condi-
tion. Finally a gene is active if a TF which activates it is active in a condition
or a gene which is similar to it is active in that condition. Similarly a gene
is inactive depends whether a TF which inhibits it is active in a condition or
a gene which is similar to it is inactive in that condition.

4.4 Model 1: Joint model, Inferring Similar-

ity from Activity

This is the first joint model we experimented with. This model has rules

which predicts Linked predicates (LinkedI and LinkedA) and Similarity pred-

icates(SimilrGn) both from the gene expression. Gene expression is inferred

from combination of Linked predicate with Activity of TFs and Similarity

with Activity of genes. This can be seen in Fig [4.2]

Below are the rules of the model. Figure [4.2] captures the semantics of these
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4.4 Model 1: Joint model, Inferring Similarity from Activity 19

rules:

1. Active(g,c) ∧ ActiveTF(t,c) => LinkedA(t,g) +(t,g)

2. !Active(g,c) ∧ ActiveTF(t,c) => LinkedI(t,g) +(t,g)

3. ActiveTF(t,c) ∧ LinkedA(t,g) => Active(g,c) +(t,g)

4. ActiveTF(t,c) ∧ LinkedI(t,g) => !Active(g,c) +(t,g)

5. Active(g1,c) ∧ Active(g2,c) => SimilrGn(g1,g2) +(g1,g2)

6. !Active(g1,c) ∧ !Active(g2,c) => SimilrGn(g1,g2) +(g1,g2)

7. Active(g1,c)∧ SimilrGn(g1,g2) => Active(g2,c) +(g1,g2)

8. !Active(g1,c)∧ SimilrGn(g1,g2) => !Active(g2,c) +(g1,g2)

9. !SimilrGn(g1,g2) +(g1,g2)

10. !Active(g,c) +(g)

In the first rule LinkedA is inferred. a TF activates a gene g if when gene g

as well as TF t are active in a condition. In second rule, LinkedI is inferred.

TF t inihibits gene g when TF t is active but gene g is inactive in a condition.

Next two rules are about inferring activity of gene. Gene g is active if there is

a TF t which activates it and TF t is active.Gene g is inactive if there is a TF

t which inhibits it and TF t is active. Next two rules infer similarity. Genes

are similar when they are either both active or both inactive in a condition.

Next two rules (7,8) infer gene activity. gene g is active if there exist a gene

g2, which is similar to it and it is active in that condition. Similarly gene g

is inactive if a gene which is similar to it is inactive in that condition. Next

two rules say that by default genes are inactive and are dissimilar to each

other.
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Figure 4.4: LinkedA is inferred when gene as well as TF is active in a con-
dition. LinkedI is inferred when TF is active but gene is inactive in a condi-
tion. Genes are similar when they have same TFs which link with them via
LinkedA and LinkedI. Finally a gene is active if a TF which activates it is
active in a condtion or a gene which is similar to it is active in that condition.
Similarly a gene is inactive if a TF which inhibits it is active in a condition
or a gene which is similar to it is inactive in that condition.

4.5 Model 2: Joint Model, Inferring Similar-

ity from Links

This model is different from Model1 in its inference rules of similarity. Here

we are inferring similarity not from gene activity but from similar links. We

say that a gene pair is similar if they have identical links. This definition

is closer to the actual semantic meaning of similarity. It is so because there

can be noise in the activity data. On inferring links, we hope that noise gets

canceled out and hence the inference of similarity will be more authentic.
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Below are the rules of the model. Figure [4.2] captures the semantics of these

rules:

1. Active(g,c) ∧ ActiveTF(t,c) => LinkedA(t,g) +(t,g)

2. !Active(g,c) ∧ ActiveTF(t,c) => LinkedI(t,g) +(t,g)

3. ActiveTF(t,c) ∧ LinkedA(t,g) => Active(g,c) +(t,g)

4. ActiveTF(t,c) ∧ LinkedI(t,g) => !Active(g,c) +(t,g)

5. LinkedA(t,g1) ∧ LinkedA(t,g2) => SimilrGn(g1,g2) +(g1,g2)

6. LinkedI(t,g1) ∧ LinkedI(t,g2) => SimilrGn(g1,g2) +(g1,g2)

7. Active(g1,c)∧ SimilrGn(g1,g2) => Active(g2,c) +(g1,g2)

8. !Active(g1,c)∧ SimilrGn(g1,g2) => !Active(g2,c) +(g1,g2)

9. !SimilrGn(g1,g2) +(g1,g2)

10. !Active(g,c) +(g)

4.6 Model 3: Model 2 with Basic Model Rules

Added

We see that there are so many unknowns that the learning may converge to

some local minima. Hence we try to enforce the learning to go in the ’region’

where the basic model took us by adding those rules in our model.This model

was added for the artificial data experiments.

4.7 Results

We used deepdive software for MLN Weight learning and inference. For

weight learning it uses gradient descent. We did a grid search on the decay

factor and the stepsize parameter of gradient descent to get to the optimal
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Different Models Genewise Accuracy

Majority Class 51.2
Basic Model(on clusters) 65.67
Basic Model(on genes) 66.74

Model0 62.25
Model1 63.27
Model2 66.43

learning parameters. Note that we are partitioning our data into training

and validation set and we check the correctness of the model by comparing

the predicted and actual output of activity of genes. In short the accuracy

is measured on Active predicate.

All of the three models performed similar to that of the basic model. Due

to the large size of the data, we took 130 genes from 6 clusters obtained by

cmonkey Clustering and did our experiments with models. We notice that

our best model, namely Model2 also doesn’t outperform the basic model.

The reasoning behind Model2 to work better was that it conceptually cap-

tured the links as well as the similarity between genes. When we analyzed

the weights, we found out that the similarity was not getting captured as

can be seen in Figure [4.5] and Figure [4.6]. From the figure we see that the

weights for those rules which include the similarity predicate came out to

be negative, which shows that the interpretation of the learnt model doesn’t

match with expectations on which the model was constructed.

We note that here we have 190 Transcription factors and 130 genes. For

each gene, only a handful of TFs are responsible for its activation and its

deactivation. This enormous degree of freedom is what causes the model to fit

a different set of weights. To simplify things first, we move to generating our

own data from a artificially created regulatory network and test the models.
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Figure 4.5: Figure shows the mean and the standard deviation of weights
learnt by deepdive for Model1. We see that for the weights involving sim-
ilarity predicates, mean is negative and even mean + std deviation is also
negative. This indicates the weights learnt for rules involving similarity pred-
icates have a different meaning. Hence Similarity is not getting captured.

Figure 4.6: As in previous figure, for Model2 also, we see the same outcomes
namely similarity is not getting captured.
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Chapter 5

Experiments on Artificial Data

In this chapter we will first describe the methodology of Regulatory Network

generation and generation of data from it. In the next section we will discuss

the results of the different models on it.

5.1 Artificial Regulatory Network Generation

The idea is to fix the number of (hard) clusters. For each cluster pick the

TFs randomly which will have links to it. Next we divide the selected TFs

into activating TFs and inhibitory TFs. We then randomly generate weights

for each such cluster TF pair. In later experiments only one type of link is

kept between TFs and genes. In that case weights are allowed to be negative.

Positive and negative weights captures what was intended to capture from

two types of links between TFs and genes. MLN generation is explained

in the figure [5.1]. All genes belonging to a cluster will inherit the links

generated for that particular cluster. So two genes belonging to same cluster

will have identical set of links. It is coded in MATLAB and parameters

such as number of TFs, number of Genes, number of Conditions, Range

of weights, minimum number of links allowed, maximum number of links

allowed can easily be configured.

5.2 Data Generation

For generating one example(in real data it corresponds to one condition)

from the Regulatory network, we first randomly set the ActiveTF predicate

instances to true or false. Now for each gene g and condition c, we first

find out the set S of clauses in which Active(g,c) predicate occurs. Let S ′

be a subset of S which corresponds to all clauses which become true when
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5.2 Data Generation 25

Figure 5.1: A step by step procedure to generate the regulatory network.
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Active(g,c) is set to true. We calculate the sum of weights of every clause in

S ′, call it sumtrue. Let S ′′ be set of all clauses in S which becomes true when

Active(g,c) is set to false. Let us call the sum of weights of S ′′ as sumfalse.

We set Active(g,c) to true if sumtrue is greater than sumfalse, otherwise

we set it to false. Data generation procedure is explained in Figure [5.2].

Since for each gene in a cluster, links are identical, so equivalently , clauses

in which they occur are identical ’functionally’. So the setting of true/false

will also be identical for all genes in a cluster. In order to add some noise

to it so that it corresponds to real world scenario, we flip 5 percent of all

instantiated predicates of Active(g,c) for each gene g.

We have made some changes with respect to the graph generation process.

For example we have changed domain of weights from [0,1] to finite domain

{-1,1}. At some places we have changed the sparsity of the network by

changing the maximum/minimum number of links allowed. All configuration

specifications will be mentioned at the start of experiment section.

5.3 Results

Over all experiments we have taken 86 % of the generated conditions(examples)

as training set and remaining 14 % as test set. This is done for all (exam-

ple counts) conditions. Note that in this artificial setting, we may explicitly

check the quality of links retrieval, in addition to checking the accuracy of

Active(g,c) prediction.

5.3.1 Experiment 1: Comparing Basic Model and Joint

Model on Artificial Data.

• Gene count = 50

• TF count = 60

• Minimum Links Allowed = 2

• Maximum Links Allowed = 10
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Figure 5.2: Procedure for generating ’noisy’ data from the regulatory network
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• Fraction of Links which are activating = 75%

• Weights domain = [0,1]

• Rules Included = 1,2,3

Basic Model:

Below table gives the test accuracy of prediction of Active(g,c) predicates.

Model Type 50 150 300 600 750 900 1500

Majority Class 0.72 0.79 0.75 0.77 0.78 0.78 0.75

Basic Model 0.76 0.81 0.78 0.78 0.80 0.82 0.87

From above table we observe that when the condition count goes to 1500,

then we see some learning. Before it the basic model is around the same

ballpark as Majority Class.

Model 3:

Below table gives the test accuracy of prediction of Active(g,c) predicates.

Model Type 100 150 300 450 600 750

Majority Class 0.80 0.73 0.74 0.77 0.76 0.77

Model3 0.79 0.74 0.76 0.78 0.76 0.77

We see that Model3 doesn’t do better than the Majority class prediction.

In the hindsight it seems intuitive. For Basic model, we see that effective

learning takes place when we reach 1500 conditions. This model have much

more complexity and hence needs even greater amount of data for proper

learning. However, the size of MLN grows ’fastly’ with increase in conditions

count and is not possible in deepdive to run the model3 with big enough

condition count for which the joint model shows some improvement.

Another point comes up when we inspect the links retrieval from the model.

From the table below it can be seen clearly that the model is learning to-

tally different network which ’fits’ the data in terms of prediction of Active

predicate. Columns correspond to condition count. posRecall is the Recall

for the positive links (LinkedA predicate). posPrecision is the precision for

the positive links. Similarly negRecall and negPrecision are the recall and

precision corresponding to negative Links (LinkedI).
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Model3: Links Analysis

Metric 100 300 450 600 750

posRecall 0.18 0.16 0.20 0.27 0.25

posPrecision 0.06 0.07 0.08 0.09 0.08

negRecall 0.62 0.18 0.45 0.75 0.49

negPrecision 0.02 0.01 0.02 0.03 0.02

For the case of Basic Model also we get similar results. In basic model, we

are inferring a link to be a positive link if the weight of the first rule of

the model comes out to be positive. Similarly, negative link is assumed if

the weight of the second rule comes out to be positive. We inferred three

possible reasons for the poor precision and recall values for link retrieval.

The first reasoning was that since every weight in MLN setting gets some

finite weight, so this will result in bad precision and recall values for links.

So we did thresholding of weights, and assumed links to be present only

if weights were above certain threshold. But thresholding the links didn’t

improve the link retrieval as is evident from the precision and recall curves.

Graphs [5.3] and [5.4] are precision recall curves for positive and negative

links respectively .

This second argument for low links retrieval was based on high degeneracy

present in the model. On an average, number of links for a gene is 6 (mean of

minimum and maximum allowed link count). But we are given 50 TFs. Due

to this large degeneracy, MLN framework apparently ’overfits’ the data to get

some regulatory network which behaves similarly as far as Active predicates

are concerned. The third argument also is based on degeneracy of the model.

We had two different rules which were semantically negation of one another.

This could in essence be captured in one single rule whose weights can be

both positive and negative.

Above two arguments motivated us to check the performance of the model

when the TF count is low and also with only one of the two (activating or

negating TF) rules. This would mean less number of possible Regulatory

networks satisfying the generated data. This would also mean a simpler

domain, and hence learning is expected to be accomplished with relatively

low condition count.

c© 2015, Indian Institute of Technology Delhi



5.3 Results 30

Figure 5.3: Figure shows variation of positive Link precision and recall with
thresholding. Even with high thresholds, precision doesn’t go up, thereby
indicative of the fact that a different model has been learnt.
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Figure 5.4: Figure shows variation of negative Link precision and recall with
thresholding. As in case of positive links, even with high thresholds, precision
doesn’t go up, thereby indicative of the fact that a different model has been
learnt.
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5.3.2 Experiment 2: Use of Improved Basic Model on

Simpler Network

• Gene count = 50

• TF count = 10

• Minimum Links Allowed = 1

• Maximum Links Allowed = 3

• Weights domain = {-1,1}

• Rules Included = 2,3

Basic model(improved) was able to give high accuracy of 87.6% over the

validation set (for prediction of gene activity) and was able to retrieve the

links to a appreciable degree. Below is the precision recall curve for the link

retrieval and the learning curve(wrt gene activity prediction).
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Figure 5.5: Figure shows variation of precision recall curve with number of
conditions(examples). We see a nice improvement in link prediction with the
increase in number of conditions

To understand more about the problem at hand we did a third experiment

where we varied the link upper and lower limits. Before we move on, it is

worth noting here that gene expression prediction in case of Joint model

(Model 3) is good. Issue is the poor link retrieval. Below is the learning

curve for Model 3 and Basic Model over gene expression prediction.
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Figure 5.6: Figure shows variation of accuracy (of gene expression prediction)
with number of conditions for basic Model and (Joint)Model 3

5.3.3 Experiment 3: Understanding Effect of Density

Variation of Regulatory Network on Learnability

of Links.

• Gene count = 50

• TF count = 10

• Minimum Links Allowed = Variable

• Maximum Links Allowed = Variable

• Weights domain = {-1,0,1}

• Rules Included = 2,3
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In the first part of the experiment, we varied the density of the network i.e

the links. We calculated the gene expression prediction accuracy and the pre-

cision recall for links retrieval for three sets of link limits: {(1,3),(2,6),(4,8)}
where in (a,b) a and b are the minimum and maximum links allowed respec-

tively. Here the weights are from {-1,0,1}.

We see that the best precision-recall curve we get is in the (1,3) link set.

Intuitively a simpler network is easier to learn.

Results of this experiment is promising with basic model. But in real data,

we have 190 TFs. So the completion of this set of experiments demands one

with that many TFs. Number of genes doesn’t matter for the basic model as

genes are independent of each other. Hence we can independently calculate

weights and activity of genes.

5.3.4 Experiment 4: Regulatory Network Density Vari-

ation in Real Sized Network

• Gene count = 50

• TF count = 190

• Minimum Links Allowed = Variable

• Maximum Links Allowed = Variable

• Weights domain = Discrete : {-1,0,1}

• Rules Included = 2,3

In this part of the experiment, we experimented on different maximum,minimum

weight limits and calculated the area under the precision recall curve. We

got same kind of results as we had got in the previous experiment. As we

increase the average number of links allowed, precision goes up and recall

comes down. In case of recall however, there is significant variance. As for

the area under the curve, it comes down as we increase the average number

of links per gene.
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(a) Model with (1,3) link-set has the best recall. It is due to
the simpler model of (1,3)

(b) Model with (4,8) link-set has the best precision. It can
be argued that it having the largest number of links makes
the precision go up.

Figure 5.7: Precision vs threshold and recall vs threshold plots
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Figure 5.8: Figure shows Precision Recall curves for the three models with
differing link sets: (1,3),(2,6),(4,8)
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Figure 5.9: Figure shows Precision Recall curve for different link sets for
boolean weights with 190 TFs. It is evident from figure that with increase
in the average number of links, we see a decline in retrieval of links.

This experiment shows that the apparent high degeneracy in the model oc-

curring due to large TF count and less number of links from TF to gene on

average doesn’t lead to less retrieval of links as compared to the degeneracy

occurring due to redundant rule. This is inferred by looking at results of

experiment 1 and experiment 4. Note that the prediction of gene activity

is high in both cases. The concern was that a totally different regulatory

network from the artificial network was being learnt in former case.
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Figure 5.10: Figure shows Area under curve of precision recall for the case
of link retrieval plotted with average number of links per gene. We see that
as the average number of links increase, area under precision recall curve
decreases.
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Chapter 6

Discussion

Here we will present to the reader a qualitative description of the entire work

done in this project more or less in the order in which the project evolved.

We start with a simple MLN model developed previously to solve the same

problem in an earlier MTP at this institute. In that MTP, the genes were

clustered because of two reasons. First was to reduce the data complexity so

as to make learning the regulatory network feasible. Second reason was to

average out the noise by the clustering.

Our project started with the idea that since clustered genes are co-regulated

and that co-regulated genes should be in same cluster, it makes more sense

to do a joint inference of the clusters and the regulatory network rather than

first clustering the data and then subsequently finding the links as was done

in the mentioned MTP work and also in EGRIN. It is so because clustering

should re-enforce link retrieval process and vice versa.

There was a problem that biological data is inherently noisy. EGRIN tried

to handle this issue by preclustering the data and then feeding clustered data

to its regulatory network generation algorithm. We on the other hand tried

to handle it inside our algorithm. For inferring similarity, we designed a two

step filter in MLN. In the first step we inferred positive and negative links

from gene activity and TF and environmental activity. In the second step

we inferred similarity from the links. With this two step filtering we hoped

to tackle the effect of noise on the inference of gene expression.

On a different note, basic model had a simplification which went unnoticed

in the previous MTP. There were no links between the genes in the regula-

tory network. So subnetwork for each gene was disconnected from the sub

network of other gene. Hence it was possible to run the simple model for each
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of the genes individually. This would reduce the number of ground clauses

by 103 times. This perception allowed use to run the simple model on the

unclustered data which had not been possible to run in the previous MTP

due to enormity of data. And it turned out that besides cancelling out the

noise in the data, clustering was also blurring some useful information in the

data as we got increment in accuracy of gene expression level prediction by

approximately 1 percent.We tried our model on halobacterium dataset but

our joint model couldn’t outperform the basic model in terms of gene activ-

ity prediction. We tried with various slight modifications of the joint model

but it was not performing as was expected. In the joint model similarity

between two genes was getting inferred if they had similar positive and nega-

tive links which were in turn getting inferred from activity of gene and TFs.

We changed it from two to one level filtering. Now two genes were similar if

they were active and inactive together. But this model didn’t produce any

better results.

To get more understanding of the problem at hand, we decided to create an

artificial regulatory network and generate synthetic data from it. It was done

because with it we could control numerous parameters like sparsity of the

network, weight distribution, size of the network, rules from which data is to

be generated etc. This would enable us to study the problem at hand more

carefully and get useful insights in it.

We developed a module to generate a regulatory network and a module to

generate the gene expression and TF expression from it. On this generated

data we experimented with our model, basic model, and the improved basic

model. Improved basic model is essentially basic model minus one rule( Rule

1). We will discuss more about improved model after few paragarphs. Gene

activity prediction was high for basic model but link retrieval was poor. We

attributed the poor performance on link retrieval to degeneracy in the model

and changed the basic model by reducing one rule as explained in the pre-

vious paragraph. The improved basic model achieved a high gene activity

prediction as well as high link retrieval. In this setting the improved basic

model outperformed the joint model. It was expected for the improved ba-
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sic model to outperform the joint model as for the data generation, rules of

improved basic model were used. However the the performance of the joint

model with respect to links prediction was unexpectedly poor. Hence we

decided to experiment on the basic model itself to gain more understanding

of the problem at hand.

We varied the average number of links per gene and observed that the area

under the precision recall curve for link prediction decreases as we increase

the average number of links per gene. We also observed that the precision

increases as we increase average number of links per gene. It was expected

because deepdive, our MLN learning and inference module, was generating

some weight for every TF-gene link. So as the actual number of links in-

creased, there was an increase in the number of links correctly recovered and

hence we saw an increase in the precision. We also observed that as the

number of links increased, recall of the model decreased. It is also intuitively

explainable as follows: the less the number of determining factors are for

gene prediction, the less is the degeneracy and equivalently speaking less are

the number of ways in which the gene expression can be explained in all con-

ditions. Lets understand this with an example. Say for a gene gi there are 4

TFs t1, t2, t3 and t4 which positively induce gene expression for gene gi. If

any one of the four becomes active in a condition and all inhibitively linked

TFs are inactive, we will see an increase in probability that gene gi is active

in that condition. So it will get more and more difficult for the algorithm to

decipher all the links as the total number of links increases. Hence the recall

decreases.

On synthetic data we had done our experiments with small number of TFs(10).

In order to observe the effects on a scale similar to real world, we did the

experiments with number of TFs same as in the Halobacterium case(190). In

this setting too, we got the same inferences which we had got in the smaller

setting namely that: precision increases with the increase in the average

number of links per gene, recall decreases with the average number of links,

and the area under precision recall curve decreased with the increase in the

average number of links per gene.
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While this artificial network module was getting created in MATLAB, we

got another insight about the basic model. It has three rules. First rule is

about activating link from TF to gene. Second is about the inhibitive link

from TF to gene and third rule is prior of gene being inactive. The problem

is that we don’t have any semantic explanation of negative weights for the

first two rules.We have three states for a link. It can be inductive, inhibitive

or be not present. All this can be captured in a single rule by assigning

semantic meaning to the positive weight, negative weight and zero weight.

Note that besides causing the semantic handicap ,the two separate rules also

create unnecessary redundancy in the model which may or may not reflect

in the prediction accuracy of genes significantly (although we have reasons

to believe that improved model should do better even with gene expression

prediction accuracy which is described in subsequent paragraphs ) but will

certainly reflect in the links retrieval precision and recall. Hence we created

an improved basic model by eliminating one of the rules from the Knowledge

base. We call it the improved basic model.

We also tested the improved model on the real Halobacterium data set using

the same conditions as were present in case of the basic model. Improved

basic model achieved 67.35 % accuracy in terms of prediction of gene ex-

pression where as the basic model had achieved 66.74% accuracy. Earlier

we had seen significant improvement over basic model in link retrieval for

artificial data and now we see an improvement in gene expression prediction

over basic model in our improved basic model. We try to explain this cause

of improvement below.

Assuming our semantic assumptions for the biological regulatory network to

be correct, we find that basic model has got the freedom of having negative

weights which violates the semantic assumptions. Putting it differently, ba-

sic model has the freedom to learn a network which is semantically different

from what is intended to learn. We say this because we don’t have a semantic

explanation for negative weights for first two rules of basic model.Improved

basic model, on the other hand, doesn’t have that freedom as all three out-

comes for weights namely positive weights, negative weights and zero weights

have a distinct semantic explanation. Hence basic model can capture the
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noise or any other unintended pattern in the data to some extent which will

make its performance wrt gene expression level prediction and link retrieval

poorer.

We conclude with one understanding that while dealing with MLN models,

one should constrain the rules to fit exactly the semantic meaning intended.

This reduces the size of parameter space there by increasing the effectiveness

of gradient descent or for that matter, any other learning algorithm. Also it

is better to work with simpler models as they require less learning data and

are relatively easier to learn.
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