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Abstract—This paper presents a data driven approach to
explore the variations in the electroencephalogram(EEG) signals
when a person tries to imagine movements like moving his or her
left hand, right hand, foot and tongue. The paper tries to find out
the type of variations that occur in the EEG signals when such
type of imagined movements are undertaken by a person and
also the regions in the brain where the variations of EEG signals
are the most pronounced. EEG data corresponding to the said
actions was captured from three different persons using multiple
electrodes placed over the head. Features based on auto regressive
power spectral density and entropy measures have been used to
analyze this data. This was followed by feature selection process
to reveal the most prominent of the features. Analysis of the
selected features revealed the positions of the electrodes which
were picking up the variations in the EEG signals. This resulted
in the identification of the regions in the head where the signal
variations were most prominent. It was found that the positions
were not fixed but varied from person to person. The findings
have been backed up by time-frequency maps of the signals which
describes the type of variations that happens in the EEG signals
when different kinds of movements are imagined and how varied
these variations are with respect to individual subjects as well as
the types movements performed.
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I. INTRODUCTION

Electrical activity inside the brain can be affected by various
kinds of actions like movement of arms and legs, as well as
visualization, problem solving or even just by imagination.
Measuring this electrical activity of the brain can be done
using electrodes placed over the scalp. The recorded signal
is the electroencephalogram or EEG. There are variations in
the EEG when a person moves his or her hands and legs.
Not only that, even when a person tries to imagine such kind
of motor movements, then also, there are variations in the
EEG signals. The paper tries to identify four different types
of imagined movements, namely, movement of right hand, left
hand, legs and tongue movements from a person’s EEG signal.
The paper uses machine learning approach to learn a classifier
about the variations in the EEG signals from different subjects
and for different kinds of imagined motor movements and later
on use the learned classifier to identify the imagined event
from new EEG signals. The paper also tries to give an idea
about the type of variations that happens in the EEG signals

when such kind of imagined movement is performed and also
the regions in the brain that are affected while performing
those movements. Once the affected regions are identified,
time frequency maps of EEG signals from those regions have
been analyzed to get an idea about the variations in the signals.
These variations are revealed through the perturbations in the
power spectrum in certain frequency bands when different
kinds of imagined movements are performed. It has been
observed that the changes in the power spectrum and the
affected frequency bands differ both subject to subject as well
as for different types of movement. Moreover, the variations of
the EEG signals also differ based on the location of the head
from where it was recorded. That is, for the same subject and
for the same kind of imagined movement, different variations
in EEG signal can be observed at different regions of the head.
This whole study has been portrayed through the following
sections. Section II describes the EEG data that has been used
here. The source of the data has been the BCI Competition III
dataset. Section III provides information about preprocessing
of the EEG signals to reduce the content of noise that comes
with it. Section IV describes the various feature extraction
techniques that have been considered here based on algorithms
like auto-regressive power spectral density estimation and
different kinds of entropy measures.Section V takes a deeper
look into the features extracted from algorithms discussed in
the previous section. Here, all the features were combined
together and subjected to feature selection algorithm. The
selected features revealed a lot of information about the
relevancy of certain features and electrode positions as well
as their variations from person to person.Section VI provides
a comparative study of the classification accuracies. Section
VII gives an idea about the variations in the EEG signals by
studying the time-frequency analysis of the same. Section VIII
concludes the paper.

II. EEG DATA

The data set of EEG signals used here is taken from BCI
Competition III (Dataset IIIa) [1]. This data set contains
data from three subjects pertaining to four different kinds
of imagined movements. These are imagined left hand, right
hand, foot and tongue movements. The EEG data was collected
from 60 channels placed over the scalp. The experiment



consisted of several runs with the subject being displayed
different types of arrows (pointing left, right, up and down) ,
each indicating a different type of movement to imagine.Left
arrow corresponds to imagining of movement of left hand,
right arrow for right hand movement imagination, up arrow
for feet and down arrow for tongue movements. Each trial
lasted 10 seconds in duration, with the arrow being displayed
from 4th till 7th second. Further details of the experiment can
be found here in [2]. The data set consists of multiple trials
from each subject with each trial having 60 channels and each
channel containing EEG signal sampled at 250Hz.

III. PREPROCESSING

For this paper, signals starting from 4 to 8 seconds have been
separated out from each trial. This was done to capture the
variations for different kinds of imagined movements because
the visual cues displayed to the subjects were also during the
same period. A Common Average Reference (CAR) [3] filter
was then applied on each of the trials. CAR takes the mean
of the data from all the channels involved in each trial and
subtract the same from each of the channels. This helps in
minimizing the effects of uncorrelated random noise occurring
from a single or multiple set of electrodes. [19]. The data
set have been tested with different kinds of classification
algorithm and for each and every case, the application of
Common Average Reference Filter has improved classification
accuracy.The performance have been detailed in Table I.

All of the signal data were band passed between 8-30Hz
to remove the possibility of the influence of any ocular or
muscular artifacts as the frequency of such artifacts mostly
lie between 1-5Hz frequency range. The EEG signals were
further subdivided into the following frequency bands 8-12Hz,
12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz and 26-30Hz. This
was done because the sub bands responsible for capturing
variations of EEG signals vary from person to person.

IV. FEATURE EXTRACTION

Instead of relying on a set of features coming from a
single feature extraction algorithm, features were extracted
from quite a few different kinds of algorithms namely auto-
regressive power spectrum density based features and entropy
based features. Auto-regressive algorithms were chosen as they
provide better frequency resolution even in case of short data
record. Entropy has been another popular method for analyzing
complex biological systems. Entropy basically provides a
measure of the uncertainty or complexity of a signal and
has been extensively used to study epileptic brain signals
[16], Alzheimer disease [4] and also for doing sleep study
[8].Given the non-stationary and non-linear nature of EEG
signals [17], entropy calculation becomes an easy pickup as
a feature extraction method. Three different types of entropy
measures have been used here for extraction of features
namely Shannon entropy, Sample entropy, Renyi entropy and
Log Energy entropy based on the extensive usage of such
algorithms in analyzing EEG signals [10], [21], [14], [13],

[18], [13]. For auto-regressive power spectral density both
Burg and Yule-Walker has been used.

V. FEATURE SELECTION

In order to find out the areas of the brain where the EEG
signals are most affected due to different types of imagined
movements, it was required to identify the the channels which
are responsible for capturing the variations in EEG signals.
As a result, features extracted from individual algorithm as
discussed in Section 3 were combined together to form a
large feature set. A feature selection algorithm based on chi-
square was applied to extract out a subset of the features good
enough to differentiate the different types of movements from
the signals. A good study of the selected features revealed
certain electrode positions that were getting selected more
often than others through feature selection procedure. This has
been detailed in Table II.

Table III shows the positions of the electrodes for all the
three subjects as selected by the feature selection algorithms.
The selected electrodes have been marked with bold circular
boundaries.

If observed carefully, the positions of the selected electrodes
seemed to represent certain particular localized regions of
the head. for Subjects K3B and L1B, most of the selected
electrodes were from the left and right positions of the head
whereas for subject K6B the left side of the head showed more
prominence than the right. But, until and unless we can gain
knowledge about the nature of the EEG signals recorded at
these electrode positions, nothing more can be revealed from
here. In section VII, the time-frequency analysis of the EEG
signals have been studied and the revelations have been quite
interesting. For each subject, the selected electrodes can be
divided into two groups, based on the characteristics of the
EEG signals recorded by them. EEG signals from electrodes,
localized to one group, showed similar kind of characteristics
than electrodes belonging to another group. This has been
studied in details in section VII.

In order to verify that the selected electrode positions indeed
were the ones capable of differentiating one type of imagined
movement from the other, we have looked at the individual
binary class classification accuracies as well as the overall
multiple class classification accuracy for all the three subjects.
The results have been detailed in the next section.

VI. FEATURE CLASSIFICATION

In order to see the effectiveness of the findings as stated
above, the selected features were subjected to a linear Support
Vector Machine (SVM) classifier to find their accuracy in
identifying the various types of imagined movements from
one another. Both binary (one vs one) and multiple (all vs
all) class classifications were studied and their results have
been shown in Table IV and and Table V. The idea behind
choosing a linear SVM classier was that, the dimensionality
data being already quite high, there was no need of a kernel to
further project the data into any higher dimensions. Moreover,
calculating the mapping functions for kernels like RBF, might



Burg Autoregressive PSD Yule-Walker Autoregressive PSD Entropy Measure
Without CAR With CAR Without CAR With CAR Without CAR With CAR

K3B 82.78 87.22 83.33 88.88 63.88 84.44
L1B 57.50 78.33 58.83 78.33 54.16 73.33
K6B 58.33 68.33 60.83 71.66 54.16 66.66

TABLE I: Accuracy Comparison with and without applying CAR

TABLE II: Channel Selected by Feature Selection Algorithm

Subject K3B 19, 23, 24, 27, 28, 29, 33, 34, 35, 37, 38, 39, 43, 44, 46, 52
Subject L1B 21, 22, 27, 28, 30, 34, 35, 36, 37, 38, 40, 43, 44, 45, 50, 51, 52, 56, 57
Subject K6B 21, 28, 30, 31, 32, 38, 39, 42, 46, 47, 48, 49, 53, 54, 55

(a) Subject K3B (b) Subject L1B (c) Subject K6B

TABLE III: Electrode Positions for Selected Channels for different Subjects

prove to be quite expensive when one already has a large set
of features.

Table V shows the multiple class classification accuracies
using the features selected through the feature selection tech-
nique

TABLE V: Multiple Class Classification Accuracy

K3B L1B K6B
Feature Selection 90.56 80.83 76.67

When compared with the multiple class classification accu-
racy from individual algorithms used in this work as detailed
in Table VI, it was found that the feature selection procedure
seemed to produce better results.

TABLE VI: Comparison of Accuracy from Individual Algo-
rithms and from Feature Selection Method

K3B L1B K6B
Yuler-Walker PSD 86.67 73.33 71.66
Burg PSD 87.22 78.33 68.33
Shannon Entropy 84.44 65.00 61.67
Renyi Entropy 84.44 73.33 66.66
Log Energy Entropy 83.89 68.33 58.33
Sample Entropy 83.80 68.33 58.33
Feature Selection 90.56 80.83 76.67

The accuracies depicted in Table V are also comparable to
classification accuracies as obtained by others on the same
data sets [6]. The comparison has been drawn out in Table
VII.

TABLE VII: Comparison of Accuracy with other Authors on
the same EEG Dataset

K3B L1B K6B
Hill & Schrder 96.11 55.83 64.17
Guan, Zhang & Li 86.67 81.67 85.00
Gao, Wu & Wei 92.78 57.50 77.83
AlZoubi, Koprinska1 & Calvo 93.89 61.67 78.33
Ours 90.56 80.83 76.67

VII. TIME FREQUENCY ANALYSIS

The results, as discussed in the previous section, seems to
indicate that the feature extraction process was able to identify
certain variations in the EEG signal which are unique for
a particular type of imagined movement. The best way to
analyze these variations and to get a better understanding of
what is really happening inside the brain, the event related
potentials or ERP [20] at the electrodes selected though the
feature selection process has been analyzed in this section.
ERP is understood to be the result of post synaptic potentials of
a large number of neurons which got activated simultaneously
with the invocation of certain events. The events, looked at
in this paper, involves the imagined movements of left hand,
right hand, foot and tongue. The changes in the post synaptic
potentials, if any, will be reflected in the EEG signals and
captured by the recording electrodes. To understand the same,
the time frequency analysis of the EEG signals were studied
for the selected electrodes. It was found, that, for all subjects
and for all kinds of imagined movements, there was a change
in power in the selected electrodes, right at the start of an
event.



TABLE IV: Individual Classification Accuracy

Left Hand
vs

Right Hand

Left Hand
vs

Tongue

Left Hand
vs

Foot

Right Hand
vs

Tongue

Right Hand
vs

Foot

Tongue
vs

Foot
K3B 98.89 94.44 98.89 97.78 97.78 91.11
L1B 90.00 96.67 98.33 95.00 98.33 90.00
K6B 68.33 85.00 96.67 86.67 93.33 98.33

A. ERP during Movement Initiation

Table VIII shows the time frequency analysis of an electrode
for the left hand imagined movements for all three subjects.
The duration of the EEG signals used to draw the figures are
of length 6 seconds consisting of with 3 seconds before and
3 seconds after the occurrence of an event. In each of the
sub-figures, the time has been plotted along the X-axis with
duration with 0, marked by a vertical line, representing the
time when the event starts. The labels, -3000 to 0 and 0 to
3000, represents the duration in milliseconds, before and after
the event occurs. The frequency, mapped along the Y-axis,
ranges from 0-50Hz. The power in the frequency components
are described with color codes with blue and red representing
the lower and higher end of the spectrum. It can be clearly
observed, that there are perturbations in the power spectrum,
marked by bold rectangle boundaries, in certain frequency
bands which start at the onset of an event i.e. around the time
t=0 as shown in the figure.

Thus it can be confirmed that the there are indeed some
variations that occur in the EEG signals when a person starts
to imagine some kind of motor related movement. Though
the variations themselves vary subject wise, but still imagined
motor movements do trigger some perturbations in the signals
that are picked up by the electrodes placed over the scalp.

B. Electrode Localization

Analysis of the event related potentials of the selected
electrodes revealed an interesting pattern. Based on their
time frequency characteristics, the selected electrodes can be
subdivided into two separate groups, with electrodes from
each group showing similar characteristics among themselves
but different characteristics when compared with electrodes
belonging to the other group. This feature can be seen for all
the three subjects although the positions of the groups may
differ from subject to subject. This has been detailed in figure
IX. The figure shows the groups of electrodes, as marked
by curved boundaries, which shows similar characteristics
among themselves for all the three subjects. The electrodes in
the overlapped regions shows characteristics common to both
groups. It can be seen, that for Subject K3B, the electrode
groups form at the central-left and central-right regions of the
head. For L1B, the group formation takes place in the central-
left and central-right along with the posterior-left region. The
electrode positions at the center have features similar to both
the regions and cannot be put in any of the groups. The
grouping of electrode positions is quite different for subject
K6B where the formation takes place in left-central and left-
posterior region of the head.

C. Time Frequency Analaysis for Imagined Motor Movements

Till now, what has been observed is that, there are variations
in the EEG signal at the onset of any type of imagined
movement. Moreover, these variations themselves vary based
on the region of the head from where the EEG signals were
recorded. To get a better understanding of the variations in the
EEG, a comparative study of the EEG signals has been done
using time-frequency analysis of the event related potentials.
The comparison has been done among EEG signals for all
types of imagined movements among different subjects and
also among EEG signals from different head positions of the
same subject. This has been detailed in tables X, XI and
XII. Each of the table depicts the time-frequency analysis of
EEG signals taken from two electrodes for different types of
imagined movements. As discussed before, for each subject,
there are two localized regions in the head whose EEG signals
showed different characteristics. The electrodes were chosen
in such a way that they represent one from each group. There
are five columns in each table. The first column shows the
electrode position whose EEG signal has been analyzed. The
next four columns display the time-frequency maps for four
types of imagined movements. The two rows represent the two
selected electrodes.

1) Subject K3B: Table X displayed the event related po-
tentials (ERP) for Subject K3B. For left hand imagined
movement, it can be observed that there is a decrease in
the power of the EEG signal in the 8-16 Hz and 20-24Hz
frequency bands for the electrode placed on the central-left
region. In case of the electrode placed on the central-right
region of the head, the decrease in power can be noticed in
the whole of 8-30Hz frequency band. The right hand imagined
movement displays almost contrasting characteristics where
the decrease in power in the 8-16Hz and 20-30Hz frequency
bands is more for the EEG signal coming from the central-left
region of the head than the one coming from the central-right.
For imagined foot movement, an increase in power can be
noticed in the 8-16Hz and 20-24Hz frequency bands for the
central-left electrode whereas the other electrode displays a
decrease in power spectrum in the 26-30Hz band. For tongue
movement also there are contrasting characteristics in the EEG
signals from the left and right region of the head. While the
ERP of the left electrode shows an increase in power spectrum
in the 8-16Hz band, the ERP of the right electrode displays a
decrease in power in the 26-30Hz frequency band.

2) Subject L1B: For the subject L1B, though not much
of a difference can be noticed between the EEG signals
recorded from the left and right regions of the head for left
hand imagined movement, there is still a decrease in power



(a) Subject K3B (b) Subject L1B (c) Subject K6B

TABLE VIII: Time Frequency Analysis of EEG signals before and after the onset of an Left Hand Imagined Movement

(a) Subject K3B (b) Subject L1B (c) Subject K6B

TABLE IX: Electrode Positions for Selected Channels for different Subjects

Position Left Hand Right Hand Foot Tongue

TABLE X: ERP Analysis for Differnt Types of Movement for Subject K3B

spectrum in and around the 12-16Hz frequency band for the
electrode placed on the left which is absent for the one placed
on the right. The decrease in power in the 24-30Hz is also
clearly visible in the potential from the left electrode but the
duration lasts only for a second with the onset of the event. In
case of right hand imagined movement, there is a role reversal
in the potentials of the electrodes placed in left and right
regions of the head. Here the decrease in power in the specified
frequency bands is displayed over the electrode placed on the
right is more than the one placed on the left. For imagined
foot movement an increase in power spectrum in the 26-30Hz
band can be noticed in the potential for the right electrode.
This is not observable in the potential for the electrode placed
in the left region of the head. For imagined tongue movement,
a relatively small increase in power spectrum in the 8-20Hz
frequency band can be observed for the electrode on the left

than on the right.
3) Subject K6B: In case of subject K6B, as discussed

earlier, the positions of the two different groups of electrodes
are quite different from the other two subjects. Here, the
groups are formed in the central-left and posterior-left region
of the head. Two electrodes, one from each group has been
selected to study the event related potentials (ERPs) for each
type of movement. For left hand imagined movement, the ERP
shows a relative decrease in power in the 10-24Hz frequency
band for the electrode placed on the central-left region than
that of the other whereas an increase in power can be noticed in
the 8-12Hz band for the right hand imagined movement in the
same electrode. Foot and tongue imagined movements resulted
in an increase in power in the 15-20Hz frequency band 15-
25Hz frequency band respectively in the left-posterior region
when compared with the EEG signal from central-left region.



Position Left Hand Right Hand Foot Tongue

TABLE XI: ERP Analysis for Differnt Types of Movement for Subject L1B

Position Left Hand Right Hand Foot Tongue

TABLE XII: ERP Analysis for Differnt Types of Movement for Subject K6B

It can be seen that there are variations in the EEG signals
when a person tries to imagine a type of movement. These
variations are different for different types of movements imag-
ined as well as for different regions of the head. Moreover, the
variations also vary for same type of movements if compared
against different subjects. If the event related potentials of
EEG signals recorded from the same position of the head
and for the same kind of imagined movement is compared
for different subjects, its quite hard to find a commonality
among the variations of the EEG signals. This is true for the
imagined movements and the subjects considered in this paper.
Even the positions of the head where the EEG signals seems
to get affected the most due to various types of movements
seemed to differ subject to subject. To verify this fact, from
the data-centric point of view, the EEG signals from all
the three subjects were combined together to form a large
training set and passed through the same feature extraction,
feature selection and classification procedures as discussed
in earlier sections. The plan was to find out, if there is any
increase in accuracy for any of the subjects. An increase in
accuracy would mean that there is indeed a common effect due
to imagined movements which was missing from the time-
frequency maps. Whereas a decrease in the accuracy would

second the claim that its quite hard to find any commonality
in the EEG variations for the various types of movements.

The comparison of the combined accuracy as well as
individual subject wise accuracy has been detailed in Table
XIII.

TABLE XIII: Multiple Class Classification Accuracy

K3B L1B K6B
Individual Accuracy 90.56 80.83 76.67
Combined Accuracy 81.67 74.17 56.67

It can be observed, that for all the three subjects there
has been a decrease in accuracy when trained with features
belonging to other subjects. To further verify the difficulty of
building a cross subject model, data belonging to one subject
was tested against a classifier trained with data belonging to
the other two subjects and the accuracy was found to be quite
low as showed in table XIV. The figures marked in bold denote
the classification accuracies of the individual test data for each
of the three subjects when the data used for training is taken
from the other subjects.



TABLE XIV: Cross Subject Multiclass Classification Accu-
racy

Training Data
K3B

+
L1B

K3B
+

K6B

L1B
+

K6B

Test
Data

K3B 82.78 86.11 31.11
L1B 75.83 33.33 75.00
K6B 28.33 60.00 64.17

VIII. CONCLUSION

The paper has tried to explore the variations in the EEG
signal that result from imagining various types of motor
movements. It can be observed that there are indeed changes
that occur in the EEG signals at the onset of any kind of imag-
ined movement. These changes get reflected as perturbations
in the power spectrum of the signals in selected frequency
bands. Again such kind of variations do differ based on
the region of the brain from where they are emanating, the
type of movement performed and also on the type of subject
doing the activity. It was found, that, most of the variations
in the EEG signals were observed over the sensory motor
region but the exact area varies from subject to subject. The
regions were recognized through a feature selection procedure
which identified the positions of the electrodes that were
picking up the event related potentials. The approach used
here was different in the sense that instead of preselecting
the electrodes and then extracting features form the selected
ones, features were extracted from all the electrodes and
then selected through a feature selection procedure to find
out electrode positions that captured the variations of EEG
signals while doing imagined movements. This was backed
up by time-frequency analysis of the signal potentials which
clearly showed the variations in the power occurring at specific
frequency bands. Though, the results of the experiment showed
good classification accuracy when subjects were trained indi-
vidually, the accuracy decreased when the training data from
all subjects were combined together. The accuracy became
worse when the training dataset did not contain the features
from the EEG signals of the subject against which the accuracy
was being tested. Thus, it was hard to find a common set of
features which will work well for all subjects and this is what
which requires further investigation and can be taken up as
the future work henceforth.
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