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ABSTRACT
In this paper, we present an extended 2-step probabilistic
LGTS (PLGTS) transition system which aims to identify
the network structure and stochastic nature of biological
processes using time series data. This work is a step towards
system identification in a noisy environment using transition
systems. Here, the noise implies noise in transitions between
states in the observed data. Interestingly, noise in the data
helps in assisting system identification. Experimental results
on synthetic data show that noise actually helps in under-
standing the system dynamics as well as constraining the
solution space; thus helping to identify the most probable
network structure for a given data set.

CCS Concepts
•Computing methodologies → Maximum likelihood
modeling; Discrete-event simulation; •Applied comput-
ing → Biological networks; •Software and its engi-
neering → Petri nets; •Theory of computation →
Constraint and logic programming;

1. INTRODUCTION
Biological networks describe the interactions among the

biological entities eg. DNA, RNA, proteins and small mole-
cules within the cell. Biochemical processes involve bio-
chemical reactions where different reactant molecules react
with one another to produce product molecules. Suitable
conditions and control elements are required for the reac-
tion to happen. Lack of suitable conditions or any intrinsic
noise within the system may hamper the progress of reaction
which may either lead to incomplete state of the system or
no change in state of the system at all.

Efficient modeling of biological system requires us to look
at the nature of biochemical processes it involves. Biochem-
ical processes are inherently noisy, so biochemical systems
need to have robust design features to deal with such noise.
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This suggests that considering observed data to be perfect
and designing deterministic methods for network inference
is likely to be inadequate and may result in incomplete and
inaccurate network inference. It has been seen that network
reconstruction is a challenging task [12, 5].

In this paper, we try to model the network inference task
using transition systems (see section 2), keeping in mind the
intrinsic noise in biochemical processes. In this work, we are
dealing with synthetically generated qualitative time series
data. To make the data realistic, transition noise (see section
2) is imparted in the specification prior to data generation.
The proposed network reconstruction model is tested for dif-
ferent levels of noise and sample sizes of data sets. Along
with the minimal networks consistent with the data set, re-
construction model also estimates the firing probabilities of
transitions of the network.

The paper is organized as follows: Section 1 gives an
introduction to biological networks, Section 2 gives back-
ground about transition systems and transition noise, Sec-
tion 3 gives a brief review of the work done in this field, Sec-
tion 4 discusses the data sets and network inference method,
Section 5 present experimental results followed by Section 6
which include concluding remarks.

2. BACKGROUND
Transition systems Transition systems such as Petri net

[1] and Logical Guarded Transition System (LGTS) [9] are
very helpful in illustrating the reactions in the biological net-
work and also aids in understanding biological system prop-
erties like concurrency, rate constants, activator/inhibitor
effects etc. in a graphical manner.

Petri net is a directed bipartite graph which represents
the changes in the network through a series of transitions. It
consists of two types of nodes, namely places (represented as
circles) and transitions (represented as squares) connected
by arcs. The connection between control places (activator or
inhibitor) of a biochemical network and transition is repre-
sented by special arcs (read arc or inhibition arc). Read arcs
are represented as a filled circle at the end of the arc while in-
hibition arc as a hollow circle at the end of the arc. Just like
a chemical reaction, a transition is enabled (to fire) when the
input places (reactants in a chemical reaction) contains suf-
ficient tokens (molecules in a chemical reaction). Each fired
transition transfers the tokens from input places to output
places, thus changing the state of the network. Petri nets
have been used for network inference modelling [7, 6].

LGTS transition system [9] is basically a generalisation
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of a Petri net transition system in that it constrains the
transitions using guard functions. Guard functions define
the conditions which need to be fulfilled before a transition
can fire. So, for instance, in the chemical reaction of H2O
formation, H2 and O2 must react in the presence of high en-
ergy, thus high energy becomes the guard parameter for this
reaction. LGTS identifier uses logical consequence finding to
identify the network structure given the state sequences. As
the network structure, it identifies the transition set and the
minimal set of applicable guard functions for each transition
in the transition set.

Biochemical network represents the interaction among
biological entities. Suppose in a biochemical reaction, reac-
tant A reacts with reactant B to produce product C in the
presence of entity D . This simple reaction can be graphically
represented as Petri net and LGTS as shown in figure 1 (a)
and (b).

Transition noise The term transition noise is introduced
in [11] where it implies that a transition (in effect of noise)
can fire to any state which lies within a k-bit Hamming dis-
tance of the parent state. However, in this work, the scope of
transition noise is limited and the effect of noise is taken to
be that transitions (with varying probabilities) can fire from
any parent state where the output place is absent. Here in
the presence of noise, the transition could fire to produce
its output place even when its pre-state is not fully satis-
fied, i.e., either some input place is missing or some control
place is missing. Figure 1 (c) shows complete and incom-
plete pre-states for a one-transition network. To model this
type of transition noise, transition probabilities are assigned
to all incomplete pre-states of transitions. Thus, in ideal
conditions, only the complete pre-state could transition to
the post-state while in stochastic conditions, a whole set of
pre-states could transition to the post-state.

A B

T

C

D

Complete Pre state of T : [(A,1),(B,1),(C,0),(D,1)]

Complete Post state of T : [(A,0),(B,0),(C,1),(D,1)]

Incomplete pre states of T : 

     [(A,0),(B,0),(C,0),(D,0)],

     [(A,0),(B,1),(C,0),(D,0)],

     [(A,1),(B,0),(C,0),(D,0)],

     [(A,0),(B,0),(C,0),(D,1)],

     [(A,0),(B,1),(C,0),(D,1)],

     [(A,1),(B,0),(C,0),(D,1)]

     

Place D

 present

A B

T

C

(a) (b)

(c)

Figure 1: (a) Petri net representation, (b) LGTS represen-
tation, and (c) Complete and incomplete pre-states of one
transition network in (a)

3. RELATED WORK
Some studies have attempted regulatory network inference

using transition systems from time series data. Durzinsky
et al. [4] proposed a Petri net model for network recon-
struction. They further extended their work on gene net-
works containing activator and inhibitor genes. The Ex-
tended Petri net model proposed by Durzinsky et al. [3, 2]

reconstructs the network as an extended Petri net (include
catalytic and inhibitory genes) using time series data.

Srinivasan et al. [9, 10] proposed Logical Guarded Transi-
tion Systems (LGTS) for network reconstruction using logic
programming. These are generalizations of Petri nets. They
assume transitions to be constraint guards between two states
of a system. A transition only fires if it satisfies all the con-
straints in the constraint box. Here, background knowledge
can also be used which constrains the search space signifi-
cantly. Thus, given a data set, they produce the transitions
for a network that explains the data set.

Srinivasan et al. [11] show network structure reconstruc-
tion using transition systems on noisy data sets. Data sim-
ulation assumes the correct transitions of the network to
be known and model the transition noise as a Markov pro-
cess. Thus, using initial states, state space trajectories are
traced for different levels of noise. Network structures are
obtained using logical programming system LGTS for differ-
ent noisy data sets. Then, using PRISM, the final network
structure is produced using probability estimates of transi-
tion sequences. The system finally produces a probabilistic
automaton structure. Our work in this paper follows a differ-
ent approach, though based on similar concepts. Our work
allows concurrent transition firing at a single time point in
the network. The scope of transition noise forms the basis of
the difference in the two approaches. In this work, transition
noise effects the network at a local level (i.e. at a particular
transition) while in [11], transition noise effects the network
globally.

4. MATERIALS AND METHODS

4.1 Data set
For our model implementation, we have experimented with

networks which involve single output transitions, multiple
output transitions, control places etc.

Networks considered are as follows:

• MAPK cascade pathway

MAPK (Mitogen activated protein kinases) is a cen-
tral signaling pathway that is used in cell tissues to
communicate extra cellular events to the nucleus [10].
Initiation of the pathway happens when a protein binds
to a receptor protein at the cell membrane. This trig-
gers a chain of phosphorylation reaction in a cascade
fashion. Each phosphorylated protein acts as a switch
for phosphorylation of another protein. In this path-
way, three proteins, namely MAP4K, MAP3KP and
MAP2KPP act as the switch. The Petri net structure
of MAPK cascade pathway is shown in figure 2 (a).

Time series data set for MAPK cascade pathway is
taken from Ref. [10]. Data set is a state matrix rep-
resenting place value at each state. A total of 3 sim-
ulations were done to obtain this data set. All the
simulations put together to give a total of 14 state vec-
tors. All transitions in the network are single output
transitions.

• Phosphate regulatory network in E.Coli

The phosphate regulatory network in E.Coli is a net-
work of phosphate-sensing proteins. The proteins in
the network control the phosphate level by regulating
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Figure 2: Petrinet model of (a) MAPK cascade pathway [9] and (b) phosphate regulatory network [3]

gene expression. A Petri net model of the phosphate
regulatory network [3] is shown in Figure 2 (b).

Time series data set for phosphate regulatory network
is taken from Ref. [3]. Data set is obtained from 11
simulations and the state matrix of all simulations con-
tain a total of 46 state vectors. The data set contains
single as well as multiple output transitions.

4.2 Network inference model
For network inference, we have proposed a Probabilistic

LGTS (PLGTS) system (extension to the LGTS system)
that select the most probable network structure given the
observed data set. We have also implemented a data simu-
lator for data generation in PRISM [8]. PRISM (Program-
ming in Statistical Modelling) is a programming language
for modelling complex systems using rules and probabilities.
The data set is then used by PLGTS to reconstruct network
and quantify noise. We also compared the performance of
LGTS and PLGTS on noiseless and noisy data sets.

Figure 3 shows the structure of a PLGTS transition sys-
tem. PLGTS system has two main steps: system identifi-
cation and noise quantification. System identification step
takes the data set and returns the most probable set of tran-
sitions for the concerned network. Noise quantification step
estimates the firing probability of transitions and also helps
in reducing the number of networks (in case of networks in-
volving control places). This transition system allows mul-
tiple independent transitions firing at a single time point.

Data set generation The data simulator takes as input
the network specification to generate a data set. Specifica-
tion includes initial states of the network with occurrence
probabilities and state transition probabilities for all tran-
sition sets. Simulator picks an initial state based on its oc-
currence probability. Then based on the firing probability
of the pre-places of transition sets, next state of the net-
work is generated. Simulator stops generating data when it
reaches a point where the next state generated is same as
the current state. In noiseless data set case, the end state of
the data is taken as the terminal state. While in noisy data
set case, instead of considering the whole set of end states
of sampled data sets as a terminal state set, a procedure is
applied to produce the terminal state set. In this procedure,
each end state of the sampled data is assigned a terminal
state probability P(Tr) which is computed as :

P (Tr) =
number of times end state fired in data

number of times end state occurred in data

Data simulator

LGTS Identifier

Transition Separator

Noise Quantifier

State Sequences

Set of transitions

Most probable set

 of transitions

CPT for transitions and final network structure

State

Sequences

System 

Identification

Figure 3: Structure of PLGTS transition system

A terminal state threshold Thresh(Tr) is chosen empiri-
cally which filter the end states to produce terminal state
set. Any end state whose P(Tr) is less than Thresh(Tr) is
selected as the terminal state.

System Identification After the data set and the termi-
nal state set is obtained, LGTS identifier identifies the set
of transitions consistent with the data. Since the data can
be noisy, this transition set produced by LGTS identifier
may contain noisy transitions as well. This set of transi-
tions is thus filtered using a transition separator unit which
produces the most probable transition set that explain the
observed data set. Transition separator unit separates the
correct transitions from noisy transitions by first decompos-
ing multiple output transitions into single output transitions
and then ranking the set of transitions for each output place
in decreasing order using conditional probability measure.
The probability of each transition is computed conditioned
on its parent state. Highly ranked transition for each out-
put place is selected and these selected transitions form the
transition set for the network.

The procedure for system identification task is given as
Algorithm 1:

Noise Quantification Using the final transition set and
observed state sequences, the noise quantifier unit generates
the Conditional Probability Tables (CPTs) for transitions,
thus modelling the stochastic nature of the network. Here,
for each transition, first find all (pre-state, post-state) pairs
from observed data. For each pre-state Pr S, generate a
set of post-states it fired to [Po S1, Po S2, .., Po Sn]. Fir-
ing probability from pre-state Pr S to post-state Po Sk is
computed as (C(Pr S → Po Sk)/C(Pr S)) for 1 ≤ k ≤ n
where C(Pr S → Po Sk) denotes number of times Pr S



Algorithm 1: findtransitionset(S,TS)

Data: Observed set of state sequences S
Result: Most probable transition set TS that explains S

1 Given S, function lgts(S, T ) returns set of transition T where
T = (Ts ∪ Tm) ; Ts and Tm denotes single output place
transition and multi output place transition

2 Generate output place set O from Ts

3 Decompose Tm using Ts and generate decomposed transition set
TD

4 Update output place set O using TD

5 Group transitions in TD according to common output place s.t.
for set O = {O1, O2, ..., On} we have corresponding set

T
′
= {T

′
1 , T

′
2 , ..., T

′
n} where T

′
k ⊂ T

′
for 1 < k < n and T

′
k

contains output place Ok

6 Set TS = ∅
7 for each Ok in O do

8 Rank T
′
kr according to P (C(T

′
kr)|C(Par(T

′
kr))) where

T
′
kr ∈ T

′
k for 1 < r < size(T

′
k), C(x) denotes count of x in

S and Par(x) denotes Parent state of x

9 Select T
′
kr with maximum P (C(T

′
kr)|C(Par(T

′
kr)))

10 Update TS = TS ∪ T
′
kr

11 Done

fired to Po Sk and C(Pr S) denotes number of times Pr S
occurred in the data. Finally, a CPT is generated for each
transition dictating the firing probability of complete and
incomplete pre-states. CPTs efficiently capture the entire
dynamics of the system, as inferred from the observed data.

5. EXPERIMENTAL RESULTS
In this work, we have investigated the performance of

LGTS and PLGTS models on noiseless and noisy data sets.
For experiments on noisy data sets, different noise levels
from low to high (1% to 20%) are introduced in the noiseless
data set. Here, x% noise introduction implies assigning x%
probability to incomplete pre-states to fire to the post-state
while complete states can fire with a probability of 1-x%. For
noisy data set experiments, 10 experimental realizations are
done for each sample size, and the most consistent network
structure is recorded as the final result.

CASE 1: MAPK cascade pathway
In this case, no background knowledge is used. The work

is categorised into four experiments as follows:

• Experiment 1: LGTS model on noiseless MAPK
data set

In this experiment, the LGTS model could discover the
correct network structure (i.e., correct transition set
and control places) along with some incorrect control
places for transitions. Thus, in total, 12 networks were
found to be consistent with the data set. Table 1 shows
the control places found for each transition (also see
supplementary figure 1 online). Highlighted control
places are the incorrect control places found.

• Experiment 2: LGTS model on a noisy MAPK
data set

In this experiment, 1% noisy data set is fed to the
LGTS model for network structure identification. It
is found that some spurious transitions are also iden-
tified along with the correct transitions present in the
original network. Thus, a single transition set for the
network could not be found in this case. For network
identification using LGTS system solely on the basis

MAPK cascade pathway LGTS PLGTS
Transitions Control

places
Control
places

Control places

map3k,
map3kp

Read :
map4k

Read :
map4k,
map2k,
mapk

Read : map4k,
map2k, mapk

map2k,
map2kp

Read :
map3kp

Read :
mapk,
map3kp

Read : map3kp

map2kp,
map2kpp

Read :
map3kp

Read :
mapk,
map3kp

Read : mapk,
map3kp

mapk,
mapkp

Read :
map2kpp

Read :
map2kpp

Read :
map2kpp

mapkp,
mapkpp

Read :
map2kpp

Read :
map2kpp

Read :
map2kpp

Total number of networks: 3x2x2 = 12 3x2 = 6

Table 1: Performance of LGTS and PLGTS model on noise-
less MAPK data set

Phosphate regulatory network LGTS PLGTS
Transitions Control

places
Control
places

Control
places

pst, pstP Read : pipp Read : pipp Read : pipp
pstP, pst Inh : pipp Inh : pipp,

phoApp
Inh : pipp

pipp, picp Read : pstP Read : pstP Read : pstP
phoUA, phoUI Read : pstP Read :

pipp, pstP,
Inh : pst

Read : pstP,
Inh : pst

phoUI, phoUA Read : pst Read : pst Read : pst
phoR, phoRP DoubleRead

:
(phoUA,PhoRS)

DoubleRead
: (phoUA,
PhoRS)

DoubleRead
: (phoUA,
PhoRS)

phoRP, phoR,
phoB, phoBP

Read :
phoBS

Read :
phoBS

Read :
phoBS

phoBP, phoB Read :
phoUI

Read :
pipp, pstP,
phoUI, Inh :
pst, phoUA

Read :
phoUI, Inh:
phoUA

phoA DoubleRead
: (phoBP,
phoAT)

DoubleRead
: (phoBP,
phoAT)

DoubleRead
: (phoBP,
phoAT)

phoA, phoApp Anonymous Anonymous Anonymous
popp, pipp Read :

phoApp
Read :
phoApp

Read :
phoApp

Total number of networks: 2x3x5 = 30 2x2 = 4

Table 2: Performance of LGTS and PLGTS model on noise-
less Phosphate regulatory network data set

of the data set generated in the presence of noise, it
would be difficult to select the most likely transitions.

• Experiment 3: Probabilistic LGTS (PLGTS)
model on a noiseless MAPK data set

Here, PLGTS is fed with a noiseless MAPK data set.
As per expectation, system identification unit in this
model also finds the same network structure (i.e., tran-
sition set and control places) found by the LGTS model
in Experiment 1. However, the CPTs generated for
transitions in the noise quantifier unit gives an indica-
tion of more likely control places for the transition on
the basis of the firing probabilities of all possible com-
binations of control places (found for a transition) and
particular transition. Thus, after ruling out less likely
control places, the number of networks in this case
are reduced to 6. These 6 networks include the cor-
rect MAPK network. Table 1 shows the final control
places found for each identified transition. Thus, it can
be seen here that the probability estimation step aids



A

B C

D E

In unnoisy environment, let the state sequence S 

for this two-transition network is:

S1 : [(A,1), (B,1), (C,0), (D,1), (E,0)]

S2:  [(A,1), (B,0), (C,1), (D,1), (E,0)]

S3 : [(A,1), (B,0), (C,1), (D,0), (E,1)]

Let the transitions found for this data set be: 

Tr 1 : [(Read (A), Read(D))] [(A,0), (B,-1), (C,1), (D,0), (E,0)]

Tr 2 : [Read (C)] [(A,0), (B,0), (C,0), (D,-1), (E,1)]

In noisy environment, suppose transition T2 fires prior

to T1 and state sequence be like:

S1 : [(A,1), (B,1), (C,0), (D,1), (E,0)]

S2:  [(A,1), (B,1), (C,0), (D,0), (E,1)]

S3 : [(A,1), (B,0), (C,1), (D,0), (E,1)]

In this case, transition T2 fired prior to T1 even in the absence

of its control place C. Here, unlike in above case, control place

for transition T1 which results from difference of states S2 and

S3 will be Read(A) only, since value of place D in state S2 is 0,

so, it cannot be a read control place for transition T1.

T1

T2

State difference D1 : [(A,0),(B,-1),(C,1),(D,0),(E,0)]

State difference D2 : [(A,0),(B,0),(C,0),(D,-1),(D,1)]

State difference D1 : [(A,0),(B,0),(C,0),(D,-1),(E,1)]

State difference D2 : [(A,0),(B,-1),(C,1),(D,0),(D,0)]

(a)

(b)

Suppose, control places found for

transition T1 are A and D.

Now, let the state sequence of the 

network is :

S1 : [(A,0),(B,1),(C,0),(D,1),(E,0)]

S2 : [(A,0),(B,1),(C,0),(D,0),(E,1)]

Here, transition T1 does not fire since

its control place A is OFF. 

Thus, the firing probability of transition

T1 in presence of control place D will

become low and D will be less probable

control place for transition T1.

Figure 4: Example explaining possible cases that helps in
reducing number of networks

in selecting more likely control places for each transi-
tion and finally help in providing the more probable
network structures.

• Experiment 4: Probabilistic LGTS (PLGTS)
model on noisy MAPK data set

This experiment explores the performance of the Prob-
abilistic LGTS model on noisy data. For each noise
level, the model could finally found 6 networks except
in the case of sample size 10 under 20% noise where 12
networks are found. The MAPK cascade pathway has
a total of 5 transitions. In all cases, the correct transi-
tion set is identified. The performance of the PLGTS
model on noisy MAPK network data set is shown in
table 3. It is evident that larger sample size helps in
identifying correct network structure for the given data
set.

Reduction in the number of networks (from 12 to 6) is
achieved by ruling out less probable control places for
each transition. According to observations, there are
possibly two reasons for the low firing probability of
transitions in the presence of incorrect control places:
firstly, deactivation of incorrect control place due to
noise and secondly, disabled transition when the cor-
rect control place is OFF while the incorrect control
place is ON. Figure 4 shows an example of reduction
in the number of networks for both the cases. Thus,
it is interesting to note here that noise is actually as-
sisting in ruling out the less likely network structures
consistent with the observed data set.

CASE 2: Phosphate regulatory network
Here in all experiments, as background knowledge, infor-

mation on possible activators and inhibitors is used 1. Here
also, the work is categorised into four experiments as follows:

• Experiment 1: LGTS model on noiseless Phos-
phate regulatory network data set

In this experiment, it has been seen that LGTS model
could recover the correct network structure (i.e., cor-
rect transition set and control places) along with some

1
Places picp, popp, phoR, phoRP, and phoA are not included in

possible activators list [3]

incorrect control places for transitions. A total of 30
networks are found to be consistent with the data set.
Table 2 shows the control places found for each tran-
sition (also see supplementary figure 2 online). High-
lighted control places are the incorrect control places
found.

• Experiment 2: LGTS model on noisy Phos-
phate regulatory network data set

In this experiment, a 1% noisy data set is fed to the
LGTS model. It is found that the correct transition
set is not found for the network. Also, some spurious
transitions are identified. Thus, in the noisy data case,
LGTS model performs poorly.

• Experiment 3: Probabilistic LGTS (PLGTS)
model on noiseless Phosphate regulatory net-
work data set

In this experiment, the PLGTS model could discover
the correct network structure (i.e., the correct transi-
tion set and control places) along with some incorrect
control places for transitions. A total of 4 networks
are found for the given data set. Table 2 shows the
control places found for each transition. It can be seen
that the number of candidate networks is significantly
reduced with the PLGTS model.

MAPK Cascade Pathway
Noise
level

Sample size

10 25 50 100

1% 6 /
12

Y 5 6 /
12

Y 5 6 /
12

Y 5 6 /
12

Y 5

5% 6 /
12

Y 5 6 /
12

Y 5 6 /
12

Y 5 6 /
12

Y 5

10% 6 /
12

N 4 6 /
12

Y 5 6 /
12

N 4 6 /
12

Y 5

20% 12
/
12

N 3 6 /
12

N 4 6 /
12

Y 5 6 /
12

Y 5

Phosphate Regulatory Network
Noise
level

Sample size

25 50 100 125

1% 4 /
45

N 9 8 /
90

N 10 8 /
90

N 10 4 /
45

N 10

5% 4 /
45

N 10 4 /
45

Y 11 4 /
45

Y 11 4 /
45

Y 11

10% 4 /
90

N 10 4 /
15

Y 11 4 /
15

Y 11 4 /
15

N 9

20% 4 /
16

N 8 4 /
10

N 8 4 /
12

N 9 4 /
8

N 7

Table 3: Performance of PLGTS on MAPK cascade network
and Phosphate regulatory network for different noise levels
and sample sizes. Each cell in the table has 3 entries. First
entry shows the number of networks obtained. As x / y repre-
sentation here, y denotes number of networks obtained after
system identification step while x denotes final number of
networks after noise quantification step. Second entry shows
whether the correct network is being identified (by Y) or not
(by N). Last entry shows the number of correctly obtained
control places.

• Experiment 4: Probabilistic LGTS (PLGTS)
model on noisy Phosphate regulatory network
data set

In this experiment, PLGTS could discover a total of
4 networks for most of the cases. Table 3 shows the



results of PLGTS on different noise levels and sample
sizes. The phosphate regulatory network has a total
of 11 transitions. For all noise levels, correct transi-
tion set is identified. However, in case of noise level
20% and sample size 25, one spurious transition is also
found along with the correct transition set. Although
more number of correct control places are identified
for sample size 100. Thus, larger sample sizes help in
identifying correct network structure in noisy environ-
ment. Here also, the number of candidate networks
is significantly reduced (from 45 to 4 in most cases)
for the observed data set. Thus, the performance of
the PLGTS model seems good in that it could find the
correct transition set and most of the correct control
places for all noise levels.

6. CONCLUSION
Here we investigate the identification of transition sys-

tems on biological networks using noiseless and noisy data
sets. We have looked into one aspect of intrinsic noise in
the biochemical network where it effect the reaction occur-
ring probability of complete and incomplete pre-states of the
network. Extending the LGTS system, we have described a
new probabilistic LGTS transition system (PLGTS) whose
two-step approach first identifies the most consistent net-
work structures given the observed data set using the logic
programming as well as conditional probability. And in the
second step, it quantifies the noise in the data by parameter
estimation. Experimental results on MAPK and Phosphate
regulatory network data sets show that the PLGTS system
yields promising results on both noiseless as well as noisy
data sets in terms of the number of networks obtained.

In terms of network reconstruction from noisy data sets,
this work is a variant of the work presented in Ref. [11].
While the baseline work in Ref. [11] and in this paper re-
lies on the same concept, both follow different approaches
to reconstruct the network structure. Ref. [11] follows a
logic programming approach and uses PRISM for finding the
network transitions and a probabilistic automaton structure
featuring the firing probability from one state to the next
state in case of noise. While in this work, in addition to
finding the most probable network structure given the noisy
data set, our model also focuses on finding the probabilities
of transition sets (for different pre-states / parent states),
thus describing the noise effects in local portions of the net-
work. This work gives the deeper insight of how network
dynamics change in the presence of noise and shows that
noise actually assist in constraining the solution space by
finding more probable network structures.

The approach followed in this work can apparently be
represented as a Dynamic Bayesian Network (DBN) where
places in the network at the time t+1 shows a conditional
distribution given the places in the network at the time t.
The connection between the Petri net and DBN is shown
in figure 5. Although we will be examining the precise con-
nection between Petri net and other probabilistic graphical
models such as DBNs in future work. For some more details
on this, see supplementary section 2 online.

Also, it would be interesting to test the performance of
this approach on other large and complex biological and
signaling systems. We will also try to extend the system
mechanism to work on real biological data sets.
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Figure 5: Connection between (a) Petri net and (b) DBN.
Input places of transitions in Petri net become parent nodes
in DBN. Nodes involved in conditional distribution in DBN
are shown as solid edges.

7. SUPPLEMENT
Supplementary material is available at url: http://web.

iitd.ac.in/˜sumeet/Supplementary Material CoDS 2016.pdf.
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