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Abstract and Keywords

0.1 Abstract

This B.Tech project thesis explains how the Gene Regulatory Networks

(GRNs) can be reconstructed from the corresponding gene expression data

by assuming a scale free prior structure. It also focuses on algorithms used

for generation of such data and the consequent sampling techniques. It then

compares these techniques on the basis of Area Under the Curve within the

ROC plot. Finally,the important results have been discussed and suggestions

have been made for future work.
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Chapter 1

Introduction

With advancements in technology and wide interest in molecular biology,

analysis of genomic data has continuously attracted scientists and researchers.

The computations carried out has found use in diverse fields such as medicine,

biology, therapeutics et al. In this chapter, we talk more about the problem

statement and the potential applications of the same.

1.1 Gene Regulatory Networks

Gene Regulatory Networks, often referred as GRNs are a collection of genes

in a cell which continuously interact with each other directly or indirectly

(for example through their protein products) to ensure cell’s function, fitness

and metabolism.[3]

GRNs are usually represented as graphs where each node represents a gene

and each edge represents an interaction between the two genes or nodes it

connects. These regulations between the genes may be promotory or in-

hibitory in nature.

Fig 1.1 represents one such GRN. Note that the figure shows core regulators

(pink) and their protein-interaction partners (yellow). Arrows from dashed

ellipses indicate that the targeted nodes are regulated by all of the regula-

tors present inside the ellipse. Some regulators appear multiple times in the

network to reduce the number of intersecting arrows.

Fig1.2 further explains what these arrows mean.

Identification and study of these interactions in a GRN hep us to predict

molecular pathays and regulatory relationships.
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1.2 Gene Expression Matrix 2

Figure 1.1: Source : [13]

Figure 1.2: Source: [13]

1.2 Gene Expression Matrix

A cell contains thousands of genes each of which may or may not be activated

at some given time instance i.e. they can be expressed in varying amounts

within the cell depending on the task they are performing. Some genes ex-

pression level may be highly robust while for others genes, these levels may

be very low.

These expression level of genes in a cell are measured by attaching large num-

ber of microscopic DNA spots on the surface under controlled experimental
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1.3 Motivation for Reconstruction 3

conditions. The DNA sequence measured by each spot is called a Probe and

the activation level of these Probes further indicate the expression level of

genes. [6]

These levels when captured at different experimental conditions, say n sam-

ples for a set of p genes generate the pXn dimension gene expression matrix,

as shown in Fig 1.3. This in turn can be used to reconstruct or learn the

original gene network within the cell by reverse engineering.

Figure 1.3: Source : [14]

1.3 Motivation for Reconstruction

The Gene Expression Matrix can be computed experimentally. From this

matrix, we try to reconstrcut the gene regualtory network i.e. a set of ver-

tices V and edges E using various machine learning methods. Once the

GRN has been estimated, it can serve the following purposes after statistical

inferences[7] :

1. Blueprint of Molecular Interactions :

The GRNs serve as a ’map’ or ’blueprint’ for molecular interactions
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1.3 Motivation for Reconstruction 4

and can give novel biological inferences about the same. Since the pre-

dicted edges in a GRNS represent actual physical binding between the

genes, these networks contain valuable biological information. There

are roughly 20,000 genes in humans and with the help of GRNs, certain

hubs and bottlenecks i.e. genes which actively influence other genes can

be indentified to narrow down the potential interactions for effective ex-

perimentation techniques. Such hub and bottlenecks are best shown in

Fig 1.4.

Figure 1.4: Source : [1]

2. Medicinal Uses :

Certain diseases such as cancer can be studied better by identifying

the molecular pathways rather than the individual genes. Biomakers

based on individual genes neglect these pathways. These are however

beautifully captured by GRNs allowing targeted medicines to be made.

For example, gene expression data taken from a breast cancer tumor
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1.4 Scale Free Networks 5

study, shows that scale-free structure prior recovers hubs, including the

previously unknown hub SLC39A6, which is a zinc transporter that if

responsible for the spread of breast cancer to the lymph nodes.

3. Comparative Analysis :

When more and more GRNs corresponding to different disease condi-

tions become available, we can statistically compare these graphs using

techniques such as Graph Edit Distance. This is basically a measure of

how similar two given graphs are. This will allow better study of dis-

eases and infer the possible harms one condition can have on another.

1.4 Scale Free Networks

A scale free network is simply a network whose degree distribution follows a

power law model i.e. there are large number of nodes with lesser links and

few nodes with large number of links (acting as hubs) as shown in Fig 1.5.

This is quite different from a random network where the degree distribution

of a node is binomially distributed. Mathematically, the probability for a

node in scale free network to have k edges, p(k) can be stated as:

P (k) = k−γ (1.1)

where, γ lies in the range [2, 3] for usual scale free GRNs.

1.5 Problem Formulation

There are limitations of the expression matrix. One, the number of indepen-

dent experimental conditions have an upper bound and other, there is some

noise inherent in the matrix. Hence, to increase the accuracy of the entire

reconstruction process, we utilize certain previously established biological

constraints or structural properties called priors along with the expression

data. One property of these networks is being Scale Free.

In this thesis, we assume a Scale Free prior on the gene expression data and
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1.5 Problem Formulation 6

Figure 1.5: Source : [14]

then compare the results obtained with various reconstruction approaches

such as Monte Carlo Markov Chain, ARACNE, CLR etc.

We then compare our work with Genetic Algorithm Approach implemented

by Abdul [14].

c© 2015, Indian Institute of Technology Delhi



Chapter 2

Theory

In this chapter, we talk about the main two publications that we referred

to during the project. Then we explain the MCMC technique followed by

talking about other reconstruction techniques against which we benchmark

the MCMC approach.

2.1 Literature Survey

Since analysis and reconstruction of genomic data is now one of the latest

research interests among scientists, there were many interesting papers and

thesis available online. Though all of them have been mentioned in the

References section, there are two papers from where our thesis draws it major

inspiration. These are :

1. A Scale-Free Structure Prior for Graphical Models with Ap-

plications in Functional Genomics :[15] Paul Sheridan , Takeshi

Kamimura, Hidetoshi Shimodaira ; Nov 2010

This research paper gives insights about the Markov Chain Monte Carlo

Approach that has been followed by us. The static model which is a

stochastic model depending on network parameter γ used for recon-

struction has been proposed by Sheridian et al.

One of the other most important conclusions that has been drawn from

this publication is how a scale free prior is better than a uniform prior

assumption. A uniform prior is the one where the probability of a node

having degree k in a p − node big network is binomially distributed.

P (k) is given as :

P (k) =

(
p

k

)
βk(1− β)1−k (2.1)
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2.2 Barabasi Albert Algorithm 8

This implies that the actual degree in random network is centralized i.e.

closer to the average node degree. Now when a random prior is used

on a originally scale free network, the reconstruction obtained isn’t as

good as that obtained by assuming the scale free prior.

However the vice versa is not true. When we assume a scale free prior

on a originally random network, the reconstruction is at par with a

random prior assumption.

The real genomic dataset has also been provided with this publica-

tion and has been used by us to validate the MCMC approach by γ

estimation.

2. Scale Free Prior in Gene Regulatory Network Reconstruc-

tion[14]

Abdul Hadi Shakir, IIT Delhi; June 2015

The M.Tech Project thesis by Abdul Hadi Shakir, a student of Com-

puter Science department at IIT Delhi was another major source of

knowledge and ideas throughout the making of our project. The per-

formance metric used by us to compare various reconstruction tech-

niques - the Area Under Curve in a ROC plot draws inspiration from

Abdul’s work. Abdul implemented the Genetic Algorithm technique

for reconstruction and compared it with some state of the art methods

available. He then tested this algorithm for synthetic data assuming

uniform prior at first and then a scale free prior.

His thesis also concludes that scale free prior was able to give a better

reconstruction of the network as compared to a uniform prior when

AUC is used as a metric.

2.2 Barabasi Albert Algorithm

This algorithm is used for generation of scale free dataset for experimenta-

tion. Many common real networks are scale free such as World Wide Web,

citation network and some social network. These networks share two popular

mechanisms : Growth and Preferential Attachment. [2]
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2.2 Barabasi Albert Algorithm 9

1. GROWTH : The network starts with an initial mo nodes and with

time, the network keeps on expanding in size i.e. more nodes are added

to it.

2. PREFERENTIAL ATTACHMENT : When a new node enters

the network, the probability of it being attached to a heavily connected

node (node with a higher degree) is more than the probability of it be-

ing attached to a sparsely connected node, see Fig2.1. This basically

implies that Rich gets richer and poor get poorer. It is an example of

positive feedback where initially random differences in node degree are

reinforced or magnified with time.

Mathematically, the probability of the new node being connected to an

existing node i is pi give as :

pi =
ki∑
j kj

(2.2)

where ki is degree of node i. The degree distribution resulting from the

BA is generally scale free with γ approximately 3.

SYSGENSIM uses this technique for dataset generation. It calculates

the total links in the network by multiplying average node degree with

total number of nodes. Then these links are distributed across the

network to obtain scale free property.[4]

Figure 2.1: Preferential Attachment
Source : [14]
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2.3 MCMC Implementation 10

2.3 MCMC Implementation via Metropolis-

Hastings Sampling

For a Bayesian setting,

P (G|D) ∝ P (D|G)× π(G) (2.3)

where, G is the Gene graph, D is the dataset (gene expression dataset) and

prior is scale free. Hence,

Posterior Probability ∝ Maximum Likelihood × Prior

The prior used by us is the scale free prior.

2.3.1 Posterior Probability

Let, σ be a node labeling or a permutation of integers (1, 2, ..p) where p

as discussed in Chapter 1 is the number of genes in the network. When each

node is represented by integer σi, then σ = (σ1, σ2, ...σp).

We further proceed by attaching a weight wi to each node v1, v2, ...vp of

the graph

wi =
σ−µi∑p
l=1 σ

−µ
l

(2.4)

where µ is a tunable paramter in (0,1). An important relationship is that

between µ and γ (power law distribution parameter) given by :

γ = 1 +
1

µ
(2.5)

(2< γ <3)

When a GRN has to be generated, nodes vi and vj are selected with respective

probability of wi and wj. These nodes are connected except when they are

already connected or i = j.

The forementioned step is repeated pXK time where p−µ � K � p1−µ. K

c© 2015, Indian Institute of Technology Delhi



2.3 MCMC Implementation 11

is a paramter controlling the average number of edge.

The new model parameter is now θ = (µ,K).

Further assuming that two nodes are selected independent of each other with

probability = wi, the probability of two nodes i, j not being connected,

Pi,j is calculated as :

Pi,j = (1− 2wiwj) ∼ (e−2pKwiwj) (2.6)

Now the posterior probability for the generated network is given by

product of probabilities of edges present in graph and those not present in

the graph. [14]

P (G|θ, σ) =
∏

{vi,vj}∈E

(1− Pi,j)
∏

{vi,vj}/∈E

(Pi,j)

P (G|θ, σ) =
∏

{vi,vj}∈E

(1− e−2pKwiwj)
∏

{vi,vj}/∈E

(e−2pKwiwj)

Hence, given the graph parameters, we can find out the posterior probability

of a graph and compare it.

2.3.2 Metropolis Hastings

One problem that is faced is the number of possible networks for a given set

of genes p, increases exponentially with size of p. We cannot check our results

on every possible graph. Hence we need to use some sampling technique to

sequentially arrive at the desired graph.

1. The Metropolis-Hastings algorithm works by generating a sequence of

network parameters such that, as more values are produced, the distri-

bution moves closer to the desired distribution.

2. At each step, it either adds or removes a edge from the graph and then

accepts the updated graph if its posterior probability given by Eqn 2.5

is higher than an acceptance threshold.

c© 2015, Indian Institute of Technology Delhi



2.4 ARACNE 12

In Fig 2.2, if the posterior probability is within the green range, the

graph is updated else the proposed changes are rejected and some other

edge is added or deleted from it.

3. The hyperparameter θm is updated by choosing a value with uniform

probability distribution from (θm − ε, θm + ε) for a step size of ε. This

update is rejected if the parameter lies outside the range (θmin, θmax).

Figure 2.2: Source : [11]

2.4 ARACNE

ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks)

is a state-of-the-art method for network reconstruction by reverse engineer-

ing. It defines an edge as an ”irreducible statistical dependency between gene

expression prfiles that cannot be explained as a result of other statistical de-

pendencies in the network”.[10]

It further assumes that these dependencies can be infered by studying the

pairwise statistical information and higher order analysis are not re-

quired. This allows the algorithm to retun a subset of the true regulatory

interactions with less number of false positives.

The mutual information for two genes i, j is then calculated as MIi,j

using :

MIi,j = Si + Sj − Si,j (2.7)
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2.5 CLR Technique 13

where S is defined as the entropy, a measure of randomness.

It then considers each triplet of nodes and removes the least significant edge

in each triplet. In other words, when the MIi,j is above a threshold MIo ,

an edge is created between gene i and j.

It can be implemented using ’minet’ R package.[12]

2.5 CLR Technique

CLR (Context Likelihood or Relatedness Network)[9] instead of considering

only the mutual information between a pair of genes i.e. MIi,j, it also consid-

ers a scoring measure defined as 2

√
z2i + z2j where zi for gene i can be obtained

as

zi = max
(

0,
MI(xi;xj)− µi

σi

)
(2.8)

and µi and σi are the mean and standard deviation resulting from computing

all mutual information values involving the target as well as the regulator.

The rational behind this method is the fact that most of the individual MI

values involving the target or regulator are usually sparse and insignificant.

2.6 MRNET Technique

MRNET approach basically repeats MRMR (Maximum Relevance Minimum

Redundancy)[8] feature selection procedure for every dataset variable/edges.

The MRMR approach works by updating a set of selected variables S by

adding a variable Xk such that

Minimize Redundancy,

Wk =
1

|S|2
∑
i,j∈S

MIi,j (2.9)
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2.7 MRNETB Technique 14

and Maximize Relevance,

Vk =
1

|S|
∑
j∈S

MIh,j (2.10)

where h is the target distirbution. Hence we maximize V −W .

2.7 MRNETB Technique

It is very similar to MRNET in terms of maximizing relevance and minimizing

redundancy, but it works as a backward elimination process. It starts with

a huge set of features and step-by-step eliminates those which follow the

MRMR criteria. An important advantage of this approach over MRNET is

that the former efficiently preserves those set of features which when present

together significantly increase the relevance or prediction accuracy. [8]

2.8 Genetic Algorithm

In Genetic Algorithm approach (GA) we start with an initial subset of the

population. Successive generation populations are generated by sharing of

information with previous population. This can either be done by cross-over

or mutation [5]. If the fitness of this new network is more than the median

fitness of previous population, the network is added to the next generation

population. The algorithm stops once we reach a convergence criteria or

after a fixed number of iterations. The convergence criteria is usually set as

constant median fitness of the population over 10 iterations. [14]
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Chapter 3

Results and Conclusions

Firstly we validate the accuracy of the MCMC approach by matching the

experimental and actual γ of synthetic dataset. Then the γ for real dataset

is estimated.

We then observe how γ changes with the number of edges in the generated

graphs. Finally we compare the reconstruction techniques explained in pre-

vious chapter.

3.1 Gamma estimation

For a scale free network, we have :

P (k) ∝ k−γ (3.1)

log(P(k)) ∝ -γ (log(k))

Hence, the graph of log(probability of node degree = k) v/s log(k) is

a straight line with a negative slope = -γ.

Fig 3.1 and 3.2 show these straight line plots for synthetic dataset generated

using SYSGENSIM and real dataset provided by Sheridian et al.

On comparing the γ values for these datasets, we obtain Table 3.1 results :

Table 3.1: γ Values

Dataset γ Actual γ Estimated

Real dataset 2.28(Sheridian et al) 2.23
Synthetic dataset 2.5 2.42
Synthetic dataset 2.7 2.61
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3.1 Gamma estimation 16

Figure 3.1: Synthetic dataset, Estimated γ = 2.42

Figure 3.2: Real dataset, Estimated γ = 2.23
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3.2 Threshold v/s γ 17

3.1.1 Discussion

We observe that the results are as one could expect. The γ estimated is

almost 2.5 and the plot are straight lines with negative slope. This validates

the MCMC approach used by us for scale free network reconstruction.

3.2 Threshold v/s γ

As discussed in previous Chapter for MCMC implementation, threshold is

the value above which the graph posterior should lie after adding or deleting

an edge for the graph to be updated.

We vary this threshold and plot the values of gamma obtained v/s the number

of edges present in the resulting graph.

3.2.1 Discussion

It is observed in Fig3.3 and 3.4 that when the number of edges in resultant

graph is close to edges in original graph, γ is closest to 2.5. This is the ideal

value for γ in a scale free network. It is also observed that in all the cases, γ

lies more or less in the range [1, 5] and does not reach arbitrarily high values.

Hence, even when uniform networks are estimated by assuming scale free

prior, the results are at par by those obtained by assuming uniform prior

itself as illustrated in the Literature Survey. The samples or experimental

conditions used are 500 for each in the Fig3.3 and 3.4.

3.3 AUC plots

The MCMC, ARACNE, CLR, MRNET and MRNETB approaches for graph

reconstruction are compared amongst each other on basis of their AUC value.

This performance metric is defined as follows :

1. NTP : Number of true positive edges in reconstructed graph

c© 2015, Indian Institute of Technology Delhi



3.3 AUC plots 18

Figure 3.3: Gamma v/s No. of Edges - 50 genes

Figure 3.4: Gamma v/s No. of Edges - 100 genes

2. NTN : Number of true negative edges in reconstructed graph

3. NFP : Number of false positive edges in reconstructed graph

4. NFN : Number of false negative edges in reconstructed graph

c© 2015, Indian Institute of Technology Delhi



3.3 AUC plots 19

Sensitivity, SN =
NTP

NTP +NFN

Specificity, SP =
NTN

NFP +NTN

which means that SN is probability of detecting an edge given that it is

present in the original graph while SP is the probability of not detecting the

edge given that it is absent in the original graph.

Receiver Operator Characteristics (ROC) graph is a plot for SN against 1-

SP. As we vary the threshold, we obtain different SN and SP values and

the area under the ROC changes. More the AUC, better the reconstruction

i.e. recovery of original network. The AUC should lie above the x = y line

otherwise the learning methods provide no insights.

Fig 3.5 and 3.6 show these AUC plots for varying node size and 500 samples

or experimental conditions. These values are tabulated in Tab 3.2.

Table 3.2: AUC values

Nodes MCMC ARACNE CLR MRNET MRNETB

50 0.744 0.921 0.8850 0.931 0.926
100 0.553 0.751 0.779 0.775 0.748

3.3.1 Discussion

We observe that ARACNE and MRNET are state-of-art techniques. MCMC

approach has AUC values quite less than the techniques it is compared with.

One of the possible reasons for its under-performance is that it does not

give appropriate weightage to the fact that addition of two or more edges

collectively may considerably increase the posterior probability of the graph.

It adds or removes the edges from the graph one by one. On the contrary,

this type of behaviour in edges forms the very basis of the MRNET and

MRNETB techniques.

Underperformance of MCMC when compared to ARACNE can be attributed
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3.3 AUC plots 20

to the fact that it does not take into account the pairwise mutual information

between nodes. Also, the AUC values form ARACNE never reaches 1 since

it rejects those pair of interactions with very low mutual information value.

CLR again, extends this mutual information technique.

Figure 3.5: ROC 50 genes, SN v/s 1-SP

Figure 3.6: ROC 100 genes, SN v/s 1-SP
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3.4 Comparison with Genetic Algorithm 21

3.4 Comparison with Genetic Algorithm

Finally we compare these approach with Genetic Algorithm implemented by

Abdul [14].

The genetic algorithm approach is implemented using DDEPN R package.

The comparison for GA and MCMC is done for 30 and 40 genes. The per-

formance metric used is again AUC value. We used this metric for various

approaches on the dataset used by Abdul for his analysis.

Table 3.3: AUC values, GA

Nodes MCMC GA ARCNE CLR MRNET MRNETB

30 0.639 0.532 0.721 0.712 0.707 0.693
40 0.539 0.515 0.584 0.604 0.602 0.599

3.4.1 Discussion

We observe that GA and MCMC is not as good as techniques used in previ-

ous section - ARACNE, CLR, MRNET, MRNETB. The AUC values differ

considerably. This further leads to the conclusion that it is important for

reconstruction algorithms to take into account the collective action of two

or more genes. Also, MCMC outperforms GA approach by a considerable

amount. One of the possible reasons for this observation is that GA takes

into account the fittest individuals and the overall fitness of the networks.

This fitness measure favours sparse networks. [5]

The ROC are plotted as in Fig 3.7 onwards. The sample size is 500 and

MCMC approach is used.
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Figure 3.7: ROC 30 genes, SN v/s 1-SP

Figure 3.8: ROC 40 genes, SN v/s 1-SP
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Chapter 4

Conclusion and Future Work

A conventional approach is to estimate the original gene network using the

gene expression data by maximising the likelihood without incorporating the

known priors. This may give us unrealistic networks. Hence, we are moti-

vated to use some known biological constraints in our learning methods, one

such constraint being the scale free property of networks. The Literature

review clearly illustrates that how scale free prior perform better than other

possible priors such as uniform priors.

Having understood this property, we discuss the scale free network generation

algorithm (Barabasi Algorithm) and the sampling methods that can be used

to reconstruct them. The basic idea behind other reconstruction methods

prevalent such as ARACNE, CLR, MRNET, MRNETB are also highlighted

in the theory chapter.

Finally, we observed that using the MCMC approach, we could obtain a

straight line plot between the log(probability of node degree being k) and

log(k). The slope of this line is -γ. We then showed that as we vary the

threshold and hence the number of edges of the resultant estimated graph,

the γ learnt changes. When the number of edges in the original and resultant

graph are most similar, γ is close to 2.5. We also compared the reconstruction

methods on AUC performance metric. We found that our MCMC approach

is still far behind other methods like ARACNE, MRNET, MRNETB or CLR.

This is mainly due to the fact that MCMC does not explicitly try to take into

account the fact that the collection of two or more edges may significantly

add to the posterior probability fo the reconstructed graph.

This work on gene regulatory network reconstruction using topological priors

can be extended in number of ways. We can look into priors like network

motifs which are basically small structure providing a specific functionality

to the cell and tend to repeat more often in the gene network. We can drive
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techniques like Maximum Relevance Minimum Redundancy towards scale

free priors i.e. tweak them so that they take into account this constraints

observed in most genomic data.
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