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ABSTRACT

Sub-cellular gene/protein networks are highly complex and stochastic. In the
post genomic era, one of the challenges is to use high throughput data to pre-
dict models for these biological networks. Among several issues concerning
this prediction of gene regulatory networks is noise issue which can be extrin-
sic as well as intrinsic. The model for biological network should be stochastic
in nature to deal with noise in data. Other issue is limited data availability
for some networks. In these cases, use of background knowledge about the
system would aid in accurately determining the network. Background knowl-
edge also helps in cases of missing data for some places. Although, even in
cases of good amount of data availability also, background knowledge pro-
vides robustness to the model. Objective of this proposal is to generate models
addressing these two issues. Thus, proposed research will help understanding
the biological system in more detailed and organised way.
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INTRODUCTION

1.1 SUBCELLULAR BIOLOGICAL SYSTEMS

Biological system is a complex network of biological entities working together.
At smaller scale, biological systems are cells, organelles, regulatory pathways
etc. All these systems work together to perform a common function. Indi-
vidually, each one is a complex control system in itself. To understand these
systems, one must understand the underlying mechanics of how these systems
work.

With the advancement in genome sequencing, today we have large volume
of data on subcellular biological systems in the form of gene expression data,
protein protein interaction data etc. Using mathematical models for these data
can help us retrieve meaningful information on dynamics of these systems.

1.2 MOTIVATION

Uncovering subcellular networks helps us understand how cells work out its
various functions. Understanding the dynamics of GRNs can also helps vastly
in drug and medicine field [g]. Clear picture of disease affected networks and
original networks helps in pin pointing the affected area and thus reduce time
and efforts in drug development [18].

1.3 BACKGROUND
1.3.1 Systems Biology

Systems biology is a branch that deals with describing relationship among
elements in a biological system. Systems biology gathers information about
these elements by systematically perturbing the biological system and uses
this information to generate predictive mathematical model of the system [31].
Technologies like Microarrays, high throughput proteomics helps in analyzing
the response to perturbation to assess systems properties. Thus using these
models, Systems biology explains complex biological system. Systems biol-
ogy with other disciplines of science like mathematics, computer science can
address different problems in human biology and medicine [10].

1.3.2 Gene Regulatory Network

A gene is the basic unit of heredity in a living organism. Gene expression is the
process by which the information loaded in the gene is used in the synthesis



of proteins. In gene regulatory network, genes interact with one another and
other substances to govern the gene expression levels of mRNA and proteins
[5]. A gene regulatory network is shown in figure 1. Gene regulatory networks
have an important role in every process of life, including cell differentiation,
metabolism, the cell cycle and signal transduction [33]. Understanding the
dynamics of these networks can reveal easy target in network, breakdown of
pathways which lead to a disease, behavior of network if some part break
down.
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Figure 1: Gene Regulatory Network [5]

1.3.3 Mathematical modelling techniques

Mathematical models helps in capturing underlying mechanism of a regula-
tory network. Several available methods for reconstruction of regulatory net-
works are: Boolean network, Bayesian network, Petri nets, Relevance networks,
ODE, GGM.

Boolean network

Boolean regulatory network was introduced by Kauffman in 1969 [3]. Boolean
regulatory network consist of nodes connected to each other. Nodes corre-
spond to genes and connections between genes indicate regulatory relation-
ship between genes. Edge from node A to node B indicates gene A regulates
gene B. Node can have either of the two values: o(OFF) or 1(ON). Value of
all nodes at any time point indicates the systems state at that time instant.
Value of each node at next time point is determined by values of nodes at pre-
vious time point using a Boolean function. Boolean network are suitable for
networks of small size since they can be computationally expensive for large
networks as the number of states is exponential in number of nodes.

Bayesian network

Bayesian network was introduced by Friedman et al as a tool for identifying
regulatory genes from expression data in 2000 [24]. A Bayesian network is a
probabilistic graphical model (statistical model) that represents a set of ran-
dom variables and their conditional dependencies via a directed acyclic graph
(DAG) [2].



Petri net

Petri nets were invented in 1939 by Carl Adam Petri [6]. Petri nets, also known
as Place/transition net are weighted, directed, bipartite graphs consisting of
nodes and arcs. Nodes represent transitions and places. Arcs connect place
to transition and vice versa. Petri net model represent biochemical reactions.
Places contain tokens. When a transition fires, token flow occur from input
places to output places. When there are multiple transitions present within
places, any one of them can fire, thus firing is non deterministic. Extended
Petri nets include two more arcs namely test arc and inhibitory arc. These
arcs represent catalytic and inhibitory actions. Extended Petri nets represent
biochemical reactions in more clear and concise manner.

Relevance network

Relevance network use information theory to generate graph from expression
data. Relevance network computes pair-wise similarity score for all pair of
genes in a dataset. Mutual information and Pearson coefficients are appropri-
ate similarity scores for this method. Computationally economical to imple-
ment, but less efficient.

Ordinary differential equations (ODEs)

Ordinary differential equations provide a detailed model of regulatory net-
work. Each differential equation describes the change in value of one node of
network as a function of values of other nodes. For ODE, an analytical solution
can be formulated and the resulting set of algebraic equations then describes
the change in node value over time [33]. Popular solutions of ODEs are Hill
function and Michaelis Menten functions.

Graphical Gaussian Model(GGM)

Graphical Gaussian models are also known as covariance selection or concen-
tration graphs. Here, partial correlation coefficient is used as a measure of
computing independence between genes. GGM are preferred over Relevance
networks since partial coefficients provide a strong measure of dependence
than independence [4].

1.4 OBJECTIVE AND SCOPE OF WORK

Objective of this work is to develop approaches which helps in understanding
the dynamics of subcellular biological systems. In order to achieve this goal,
following are the sub-goals I will be looking at:

e Developing predictive models for biological systems that incorporate
background knowledge (of the concerned biological system) in addition
to data.

e To estimate the effect of noise on prediction of systems and developing
probabilistic models.

e Extending models for the inference of large scale systems.
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LITERATURE REVIEW

2.1 REVIEW

In this chapter, related work is shown which forms the background of the
research proposal.

In genomic revolution, with the advancement in high-throughput tech-
niques like Microarrays, ChIP-ChIP technique and ChIP-seq technique, we
now have large amount of information on genes in the form of gene expression
data, protein-protein interaction data, protein-DNA data etc. However, this in-
formation is necessary but not sufficient to understand gene regulation. Thus,
mathematical modelling techniques are developed to model gene regulatory
networks using this data. Ultimate goal of these approaches is to understand
the dynamic behaviour of gene interactions.

In the last decade, many researchers explored this field and come up with
different models for GRN inference. Each model requires specific type of ex-
perimental data. Experimental data can be steady state (at particular experi-
mental condition) or time series data (over range of time). Steady state data
helps in revealing system’s structure while time series data helps in capturing
systems’ structure as well as its dynamic behaviour. Models have been devel-
oped for both types of data. Before the actual reconstruction procedure starts,
pre-processing and normalization of gene expression data is done. These two
form the important steps in the process as more appropriate and informative
input data helps in efficient reconstruction of GRN. Pre-processing and normal-
ization helps in removing systemic errors and redundancy in data. LOWESS
normalization [48] and quantile normalization [8] are widely used methods
for normalizing Microarray generated gene expression data. These steps are
essential while dealing with large scale data.

Majority of study of reverse engineering GRN revolves around four mod-
elling techniques:

1. Boolean network

2. Bayesian network

3. Systems of equations
4. Relevance networks

Some reviews highlight their properties and inference methods [50, [13, 32].
State of the art modelling techniques:

1. Boolean network



Boolean networks infer GRN using Boolean logic. This model takes dis-
cretized Boolean values for genes i.e. o (gene is inactive) or 1 (active gene).
Nodes in Boolean network correspond to genes and connections between
genes indicate regulatory relationship between genes. Interactions be-
tween genes are described by Boolean functions. Boolean functions use
logic operators AND (A), OR (V) and NOT (—). Boolean networks are
dynamic models, thus, they use time-series data. Value of each gene at
next time point is determined by values of genes at previous time point
using a Boolean function. Thus, the aim is to find Boolean functions for
each gene using their discretized expression values.

Boolean networks are simplified networks as they deal with discretized
values. But whether discretization of gene expression values can extract
the meaningful biological information from data without much informa-
tion loss. This is proved in [53]. Also, binary approach in Boolean net-
work makes it noise resilience and computationally efficient [53]. Boolean
networks are suitable for networks of small size since they can be com-
putationally expensive for large networks as the number of states is ex-
ponential in number of nodes. Thus, Boolean networks are suitable for
coarse-scale qualitative modelling approach and not for fine-scaled quan-
titative approach.

Some algorithms exist to infer Boolean network like REVEAL, restricted
Boolean network model, probabilistic Boolean network model etc. RE-
VEAL is proposed by Liang et al [37]. This algorithm uses mutual in-
formation of genes to determine regulatory relationship among them
and finally extract minimal Boolean network. It works well if the in-
degree value of genes is smaller. Also, this method is computationally
expensive for large networks as the number of states is exponential in
number of nodes. This problem of exponential number of states can be
solved using restricted Boolean network model proposed by Higa et al
[30]. This method aims to find most promising regulatory relationships
(up-regulation and down-regulation) among genes using time series data
set and restricted Boolean network model. Restricted Boolean network
model is restricted in the sense that it restricts the number of Boolean
functions allowed to explain the network. They proposed three rules by
analyzing time series data to produce constraint set which explains the
regulatory relationships among genes. Constraint set is produced by ana-
lyzing perturbations in states in time series data. Regulatory connections
with high frequency are selected as highly confident regulatory connec-
tions. However, this method is highly sensitive to intrinsic noise as well
as extrinsic noise as it is likely to change the constraints in constraint set.
To deal with noise, Ouyang et al [47] proposed an algorithm which is an
extension to the one proposed by Higa et al [30]. In this method, error
is computed for each predictor set of target gene and the predictor set
with min error is selected as true regulatory gene set. Also, unlike Higa
et al [30] method, it uses complete time series data to infer regulatory
relationship and not just consecutive states which makes it more robust
to noise.
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Probabilistic Boolean network (PBN) model is introduced by Shmulevich
et al [52] 51]. Probabilistic Boolean network consists of finite number of
Boolean network with perturbation over fixed set of variables [52]. Per-
turbation probability in all Boolean networks is common. Each Boolean
network has its own selection probability. In each Boolean network, prob-
abilities are assigned to potential Boolean functions (predictors) for target
genes in accordance with COD (Coefficient Of Determination) [52]. Mar-
shall et al [40] also used time series data and PBN model to infer GRN.
This model takes large time series data and divide this data into sub-
sequences. Dividing point is decided by purity function which in turn is
calculated using transition counting table. For each sub-sequence, it in-
fers a Boolean network using essential predictors with minimum cost for
each gene. It assumes that Boolean networks are switched with certain
switching probability. Complexity in accounting these switches demands
large data set. Probabilistic approach provides a better way of modelling
since the biological data is stochastic in nature and prone to external
noise.

2. Bayesian network

Bayesian network is a graphical network which represent joint probabil-
ity distribution of random variables (genes). By making use of proba-
bility, they model noise and randomness of regulatory relationship and
thus represent stochastic nature of genes. Bayesian network is a directed
acyclic graph (DAG) where the edges represent conditional dependence
between genes. Since the graph structure is of DAG, Bayesian network
cannot detect feedback loops in gene network. Both static as well as
time series data can be used construct Bayesian network and known as
static Bayesian network and dynamic Bayesian network [25, 34] respec-
tively. BANJO [1] is a ready-to-use tool for Bayesian network and DBN
inference. Werhli et al [56] gives a method to combine data and prior
knowledge to construct Bayesian network for gene inference. Ong et al
[46] also used prior knowledge of operon map to restrict the construction
of DBN for E.Coli tryptophan metabolism. Missal et al [43] used infor-
mation theory technique to determine the mutual information between
genes and chi-squared test to identify significant mutual information to
construct DBN. Beal et al [[14] used state space model to infer GRN based
on hidden nodes and data using time series data of T cell. It uses varia-
tional Bayesian EM algorithm to update parameters of model. Acerbi et
al [11] proposed a new approach named continuous time Bayesian net-
work to infer GRN from time series data. It works with discrete valued
quantities. Here, as the name suggest, variables can evolve continuously
with time. Thus, it takes into account the amount of time a gene stays
in particular state before switching to another state. Thus, this method
helps in answering queries like, for how long gene X have to be up-requlated
to have an effect on regulation of gene Y? [11] This method is applied on
T helper 17 cell differentiation and found to be effective in inferring the
regulatory mechanism.

3. Systems of equations
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They provide a detailed model of inferring GRN by taking into account
the concentrations of mRNA, proteins etc. Differential equation describes
the change in concentration value of one node of network as a func-
tion of concentration values of other nodes. Such model are quantitative
in nature and of high complexity since they use continuous expression
data. Equations can be linear as well as non-linear. Non-linear equations
models demand more number of parameters and experiments to fit the
data. Methods exist for solving linear equations such as SVD (Singular
Value Decomposition), regression etc. Li et al [36] proposed a method to
infer GRN using differential equations and prior biological knowledge.
SVD is used to solve differential equations. Gebert et al [26] proposed a
model based on differential equations using piecewise linear equations.
Bonneau [15] proposed a method called Inferelator to infer regulatory
relations between genes. This method uses regression and L1 shrinkage
methods on gene expression data to predict model for GRN. This method
yields promising results on expression data of Halobacterium NRC-1.

. Relevance network

Relevance networks are static networks as they can infer the structure of
network but not the dynamics. Here, correlated genes are identified us-
ing some similarity measure like mutual information, Pearson correlation
coefficient etc and a defined threshold. Popular examples of Relevance
networks are ARACNE, CLR, MRNET etc. Computationally economi-
cal method as they require less data but less efficient as it determines
the similarity using pair of genes while in actual case a gene may be
influenced by multiple genes. Adam Margolin et al [39] proposed an al-
gorithm ARACNE which first uses mutual information to calculate gene-
gene interaction from steady state data and then filter those interactions
using DPI (data processing inequality) to remove indirect gene interac-
tions. Major advantages of ARACNE include low computational cost, no
need of discretization and no requirement of prior knowledge. ARACNE
performed well on gene expression data sets for human B cells thus can
be used in applications for analysis of mammalian networks. Zoppoli et
al [58] used ARACNE algorithm to infer GRN from time-course expres-
sion data by measuring dependencies of genes at different time delays.
Firstly it identify time point of initial change of gene expression (IcE) for
each gene. It helps in finding possible regulator genes for gene g, will be
regulating gene gy, if IcE(g,) < IcE(g). For all pair of genes, mutual infor-
mation is calculated for different time delays. From all time delays, max-
imum MI is find for each gene pair. These max MI are then filtered using
appropriate threshold to find directed edges if GRN. TD-ARACNE per-
forms better than ARACNE. Faith et al [23] developed context likelihood
of relatedness (CLR) algorithm for GRN inference which uses mutual
information between regulators and genes and then compute statistical
likelihood of each mutual information by comparing mutual informa-
tion value against background distribution of mutual information values.
Meyer et al [42] proposed MRNET algorithm to infer edges among genes
from Microarray dataset. This method uses maximum relevance mini-
mum redundancy (MRMR) technique. This method ranks all gene pairs
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according to a score which signifies maximum mutual information with
other gene in pair and least mutual information with all other genes in
data set. All those pair are kept whose score is above appropriate thresh-
old. These pair of genes represent edges in the network.

. Petri net

Petri net is a directed graph consisting of two types of nodes, places and
transitions. Petri net are well suited for modelling complex concurrent
systems. They are similar to state transition diagram and also provide
a visual aid to model system behaviour. Steggles et al [55] proposed a
technique to construct GRN in the form of Petri net using logic minimiza-
tion and Boolean rules. This method first construct a Boolean network
and then translate Boolean terms into Petri net control structures. This
method overcomes the problems associated with Boolean networks like
lack of analysis tools and thus more clearly represent the dynamics of
system’s behaviour. They further extended this work in [12] for multi-
valued networks. Multivalued logic minimization is used to construct
Boolean terms and these terms are then used to generate appropriate
transition guards in Petri net. Hamed et al [28] used fuzzy logic and
Petri net to deal with incomplete and noisy data. Here, the goal is to
find activator-repressor-target triplets from the data. Initially, the expres-
sion values of input genes are normalized to [0,1] and then classified
qualitatively into low, med and high states based on membership values.
Rules are constructed based activator-repressor regulatory logic and con-
fidence degree of each rule is decided apriori using expert experience.
Then based on the truth degrees (membership value for each state pos-
sible for a gene) of input genes and confidence degree of rules, changes
in expression of target gene is computed. Thus, this model fits the gene
set which exhibit activator and repressor on target gene. One weakness
of this model lies in the determination of truth values of input genes and
confidence values of rules which are decided on expert advise. Also, this
model sticks to the pair of input gene being activator-repressor and thus
loose the possibility for activator-activator, repressor-repressor combina-
tions. And, this model does not take into account the possibility of single
gene controlling target gene or more than two genes controlling the tar-
get gene. Zimmer et al [35] proposed PNFL (Petri Nets with Fuzzy Logic)
method for reconstructing GRN. Using fuzzy logic, it defines a rule based
mechanism to model a system. Here, effect or regulatory relationship be-
tween genes is evaluated using fuzzy rules. At each time, one target
gene is modified. Then PNFL simulate data and this simulated data is
compared with original data using an objective function. Each move of
modifying target gene is accepted or rejected using simulated annealing
method. Inferior arcs are accepted with low probability. This method
works well with in silico size 10 genes. Strength of this model lies in
simulating data after each arc addition and comparing it with base data.
This step prunes many incorrect arcs identified by system. Durzinsky et
al [21] described an algorithm for reconstruction of extended Petri nets
from simulated time series data set by finding all minimal networks that
are consistent with the data set. It considers catalysis and inhibition of
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reactions and model them as control functions on transitions. From time
series data set, difference vector set is constructed by taking difference of
consecutive states. A difference vector may encode more than one tran-
sition thus, each difference vector is decomposed into reaction vectors.
Minimal set of these reaction vectors is found which explains all differ-
ence vectors in the difference vector set. Then, for every transition that
can also fire at terminal state, control functions are found. Control func-
tions prevent the transition to fire at any of terminal state. Terminal state
is the last state achieved at each experiment. Terminal state implies the
end state of system for corresponding experiment. Thus this method re-
constructs extended Petri net model for GRN inference. Strength of this
method lies in control functions which describe catalysis and inhibitory
events in bio-chemical processes in addition to the topology of input and
output places.

Major challenge faced by network reconstruction methods are due to sys-
tem noise (due to stochastic system) or extrinsic noise (noise due to discretiza-
tion or measurement error). Thus, new methods are developed to deal with
noisy gene data and also considers inclusion of prior knowledge. Following
are few such methods.

Emad et al [22] proposed a novel algorithm CaSPIAN (Causal Subspace
Pursuit for Inference and Analysis of Networks) for inferring directed edges
in gene regulatory network. This method is based on compressive sensing
and Granger causality techniques. Compressive sensing technique is used to
infer sparse causal interactions among genes. Given y as column vector of ex-
pression profile of target gene in different experiments and as sensing matrix
where each column vector denote expression profile of a gene other than target
gene at a time point in different experiments. Thus, this sensing matrix com-
prises expression profile of all genes other than target gene at all time points.
Given y and , List-SP (List-Subspace Pursuit) method finds a column vector
x, where non zero entries denotes the genes that causally interact with target
gene. To remove false positives from vector x, Granger causality method is
used which used F-test to compare the residuals of all genes with residuals for
single input gene recovered from x. If this measure is greater than significance
level, that input gene is accepted else rejected from x. To deal with noisy data,
white Gaussian noise is added to expression profile of genes. Value of signif-
icance level results in trade off between precision and sensitivity in presence
of noise, thus changing the value of significance level appropriately helps in
getting high precision even in presence of noise. Significance level chosen in
exp is 0.01 to 0.05. As prior knowledge, this method used scaffold networks.
This method outperforms other methods for different values of parameters.

Chang et al [17] also used compressing sensing method to infer GRN. In
no noise case, network is exactly reconstructed while with noise, method gives
reliable reconstruction. This method defines a refinement process to deal with
hidden nodes and measurement noise in data.

Han et al [29] proposed a novel approach using Bayesian approach to infer
Boolean network. Bayesian approach is used to account for un-certainities
and inclusion of prior knowledge. And MCMC (Markov Chain Monte Carlo)
method is used to sample from posterior distributions of network topology
and Boolean functions. This gives well fitted parents sets and corresponding
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Boolean functions for each node in data. Thus, this method updates network
topology iteratively until the chain converge. Initially, network topology is
generated randomly. For different sample size, accuracy decreases as noise
level increased. This method outperforms BFE and TDBN method. However,
some limitations of this method includes setting in-degree of 2 and assumption
of the model to be DAG thus not taking into account feedback loops.

Yip et al [57] presented a method to learn noise model from deletion data
and differential equation model from time series data and merged the predic-
tion results of both models to learn the network. However, this model could
not distinguish between direct and indirect regulation of genes.

Maetschke et al [38] compared the performance of supervised, semi-supervised
and unsupervised methods for GRN inference and clearly shown how super-
vised methods outperformed other methods.

Mordelet et al [44] proposed SIRENE method that used SVM algorithm for
GRN inference. This method takes gene expression data and regulation rela-
tionship between TF and genes as input and solve binary classification prob-
lem for each TF to return final gene network. The capability of this method
lies in the strength of training data. Gillani et al [16] used SVM using different
kernels for predicting GRN under different biological conditions i.e. Knock-
down, knock-out and multi-factorial expression profile of simulated steady-
state data set of E.Coli. Different kernels used are linear kernel, polynomial
kernel, Gaussian kernel and sigmoid kernel. Experiments are evaluated on dif-
ferent network sizes. Also, unsupervised method CLR is applied to infer GRN.
SVM outperformed unsupervised method in all conditions except multifacto-
rial condition. In overall all cases, SVM with Gaussian kernel outperforms all
other methods on network size of < 200.

Brouard et al [16] proposed a supervised learning technique for inferring
GRN which in addition to experimental data uses description of genes and
relationship between genes as training data. Asymmetric bagging technique is
used to learn MLN (set of weighted rules) to predict regulatory interactions.
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PROPOSED RESEARCH AGENDA

A lot of work has been reported for inferring gene regulatory networks from
high-throughput data. However, uncovering regulatory networks and under-
standing the dynamics still remain a challenge. Some problems faced by re-
searchers in this task are noise issue with the data, limited data availability
for large number of genes etc. To cope up with noise issue, model should
be robust enough to predict accurate interactions with high probability. And
for cases of limited data availability, model should be augmented with prior
knowledge about the system so that the network can be reconstructed even
with less data.

3.1 PROBABILISTIC TRANSITION MODEL FOR NOISY DATA

Biological data can have intrinsic noise as well as extrinsic noise. Intrinsic noise
comes from stochasticity in transcription or translation process while extrinsic
noise is due to measurement error while recording simulation or discretization
data etc. In case of noisy data, it is difficult to come up with accurate solution
of network as for this model has to be robust enough to produce correct inter-
action with high probability.

Using this idea, we have proposed a new probabilistic model for Petri net
to deal with noisy data.This model serves the purpose to deal with noisy data.
Noise in the data is intrinsic noise. So we try to develop a stochastic data
generation system from predefined network. Here, we deal with discretized
values (o or 1) for genes. For each transition in the network, we have state
transition probabilities.

Initially, we try to model this proposed system on water example (fig 2)
since it contains single transition. Table 1 below shows the state transition
probabilities for water example. This table shows state transition probabilities
for all possible current states. Here we are assuming the value of output place
in current state (i.e. H>O) to be o and only taking all possible H,, O, value
combinations in current state i.e. (0,0), (0,1), (1,0) and (1,1). Probable next state
defines all possibilities of values of input places and output place. For exam-
ple, if in current state (Ha, O, H>O) is (0,1,0), so next state can be (0,0,0)(i.e. O
is consumed but H,O not produced), or (0,0,1) (i.e. O; is consumed and H,O
produced), or (o0,1,1) (i.e. Oz not consumed but H,O produced) or (0,1,0)(no
change). Thus, in the presence of H; and O, in the current state (1,1,0), proba-
bility of next state (0,0,1) consuming H», O, and producing H>O is the highest.

Thus, this table lists all possible state transitions (noisy and un-noisy) with
probabilities. Probabilities for state transitions are assumed here. Figure 3

16



H,O

Figure 2: Transition diagram for water network

Current state Probable next state Probabilities
H2 02 H20 H2 02 H20
0 0 0 0 0 0 0.9
0 0 1 0.1
0 1 0 0 1 0 0.8
0 0 0 0.05
0 0 1 0.1
0 1 1 0.05
1 0 0 1 0 0 0.9
0 0 0 0.025
0 0 1 0.05
1 0 1 0.025
1 1 0 1 1 0 0.01
0 1 1 0.03
1 0 1 0.03
0 0 1 0.9
0 0 0 0.03

Table 1: State transition probabilities for water network

shows few probabilistic transitions (values taken from the table) for water ex-
ample.

Based on these probabilities for state transitions, we will simulate time
series data for water example using different initial states. Then these experi-
mentally generated data are used to recover the original network using LGTS
model [45] and PRISM [7]. LGTS model with the help of ILP engine helps
in learning new transitions (not present in the original network) for the net-
work. PRISM helps in dealing with probabilistic predicates for newly learned
transitions and learning the structure of probabilistic transition model.

In this model, we have to change the notion of terminal states as described
by Durzinsky in extended Petri net model [21]. There a state if occur more
than once consecutively in time series data is taken as terminal state. But in
our probabilistic transition model, there is a possibility that a state occur more
than once consecutively since it has high probability of not getting change.
For example, in the water network described above, we can see in table 1 that
when H;, O, and H,O are o in current state, probability of staying in this state
is high (0.9). So, next state in data will again be the same state as previous
state. In data simulation, if this is the initial state, 90% states in data generated
will be this state and 10% states will be the other state (Hy=0, O,=0 and H))=1).
In our case, terminal state will be the one which do not have any possibility of
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Figure 3: Probabilistic transition diagram for water network

moving further according to our probabilistic state transition table for example
state (H>=0, O,=0 and H»)=1). Since this state is not present in the column of
‘current state” in table 1, it cannot move further and thus a terminal state.

3.2 LGTS MODEL FOR INCORPORATION OF PRIOR KNOWLEDGE

Inductive Logic Programming (ILP) [45]: It forms a connection between induc-
tive learning and logic programming. It is a learning approach where positive
examples, negative examples and background knowledge is used to make hy-
pothesis. Generated hypothesis is such that it can explain all the mentioned
positive examples without violating negative examples and background knowl-
edge. Hypothesis are learnt first order logic rules from the facts (examples and
background knowledge). Thus, ILP forms a perfect engine to introduce prior
knowledge into the model for learning new interactions in inferring gene reg-
ulatory networks. Some popular ILP systems are PROGOL, FOIL, GOLEM,
ALEPH etc.

Logic Guarded Transition System (LGTS): LGTS has been proposed by A.
Srinivasan, M. Bain and K. Sriram [54]. It is a transition based model where
the transition are the constraint guards between two states of the system. A
transition only fires if it satisfies all the constraints in the constraint box. LGTS
model representation is better than Petrinet model in the sense that it makes
use of background knowledge which constrain the search space significantly.
Also guard function provide a procedure to check control function for each
transition.

PRISM (Programming in Statistical Modelling) [7] will be used for imple-
menting above proposed model. PRISM is an extension to Prolog language.
PRISM is a programming language for symbolic-statistical modelling. PRISM
consists of two parts: learning part and execution part. While learning part
takes care of abductive reasoning, execution part deals with probabilistic pred-
icates.

Using above described probabilistic transition model, LGTS model and
PRISM, we can have a system with provision for both background knowledge
and probabilistic transitions. Each possible transition is assigned probability
using probabilistic model. Using these probabilistic transition predicates, if
the system learns a new transition which has less chances of occurrence, this
transition is not thrown away but kept with low probability. In this way, model
can deal with noisy transitions in Petri net.
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3.3 CURRENT WORK

For the inference of gene regulatory networks, we have used extended Petri
net model proposed by Durzinsky [21] and LGTS model proposed by Ashwin
Srinivasan [54].

Extended Petri net model: Petri nets or Place/transition net are weighted,
directed, bipartite graphs consisting of nodes and arcs. Nodes represent tran-
sitions and places. Arcs connect place to transition and vice versa. Petri net
is a simple model to represent biochemical reactions. Places contain tokens.
When a transition fires, token flow occur from input places to output places.
Pure Petrinet do not represent catalytic or inhibitory actions in reactions. To
represent these actions, extended Petri nets are used which includes two more
arcs namely read arc and inhibitory arc in addition to directed arcs in pure
Petri net. Extended Petri nets represent biochemical reactions in a more clear
and concise manner. Symbols used in extended Petri net representation are
shown in figure 4.

-

O Place | \
MNodes
iti )
|| Transition Lo Q
- o
Marking ® Token % =4
=~ 1]
w >‘ o
o
- Arc J e
Read Arc E
Edges | @
or < Inhibitory Arc
Arcs « Modifier J
h Arc

Figure 4: Symbols used in extended Petri net model [41]

LGTS model is a special system which covers pure and extended Petri nets
[54]. This model tries to find a FSM (Finite State Machine) consistent with
the time series data set. Transition from one state to another is controlled by
guard functions which contains constraints for the transition to fire. Control
functions in extended Petri net model are equivalent to guard functions in
LGTS. However, LGTS model is more expressive as it contains logical as well
as linear constraints in guard function making it a more strict check function.
Figure 5 shows graphical representation of Extended Petri net model and LGTS
model.

These two models are chosen for inference of GRN as each biochemical
reaction can be modeled easily. Effect of deletion of gene acting as activator or
inhibitor in a reaction can be easily seen. Also, graphical representation helps
in better understanding.

Durzinskys extended Petri net model uses combinatorial algorithm [21] to
generate extended Petri net model for the network. Each bio-chemical reaction
is represented as transition in the model. Catalytic and inhibitory reactions are
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Figure 5: Graphical representation of Extended Petri net model and LGTS
model [41]

represented using read and inhibitory arcs respectively. Initially, time series
data set is feed to the system which is nothing but a state matrix where the
last state refers to the terminal state. Then, difference vector set is computed
by taking difference of all consecutive state vectors in the state matrix. Each
difference vector in the set is a result of firing of one or more transitions. To
find all transitions in Petri net, these difference vectors are decomposed into
sub-reactions (reaction vectors). These reaction vectors corresponding to each
difference vector can occur in any order, thus all possible permutations of these
reaction vectors are taken into account. Minimal set of these reaction vectors
is found which explains all difference vectors in the difference vector set.

Then second step towards reconstructing extended Petri net model is to
find control functions for the transitions which could fire at terminal state.
A reaction vector can fire at terminal state if the sum of these two vectors
is a valid state. Control functions are minimal Boolean functions of places
connected to transitions by control arcs (read or inhibitory arcs). Control func-
tions prevent transitions to fire at terminal state. In this algorithm, Quine Mc
Cluskey method is used to find control functions for all reaction vectors.

However, in our implementation of Durzinsky’s method, difference vectors
are only used to find transitions and control functions. We could find original
network from difference vector set itself thus reaction vectors are not consid-
ered. Also, all places are searched exhaustively to find control functions for
transitions.

In LGTS implementation, system is fed with state matrix (time series data
set). System then finds all the difference vectors. Each difference vector is
checked if it is a legal transition (i.e. it can not fire at terminal state). If it is a
legal transition, it is allowed to fire at that state but if not, appropriate transi-
tion type (read or inhibitory) and control places are found by applying guard
functions at that difference vector. Guard functions contains conditions for pre-
state (state prior to transition fire), post-state (state after transition fires) and
some invariant conditions. Applicable guard functions for difference vector
are again checked at terminal state. Only those guard functions are selected
for difference vectors which do not let difference vector to fire at terminal state.
A minimal set of guard functions applicable at transition is found. Finally,
system returns guard functions for all transitions in the network.

Data sets used are of phosphate regulatory network and MAPK cascade
network.

Experiments are executed under two heads:
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1. Incorporation of prior knowledge
2. Estimation of effect of noise

All the implementation is done in Prolog. Prolog is a logic programming
language and well-suited for implementation of both the models.

3.3.1 Networks

Networks considered for reconstruction procedure are:

1. Phosphate regulatory network in E.Coli

In enteric bacteria, phosphorus compounds are needed for growth. Amount
of phosphorus is controlled by PHO regulon which contains a set of
genes. Expression of these genes is controlled by signal transducing pro-
teins which form phosphate regulatory network. In inorganic phosphate
limiting conditions, PhoR protein gets phosphorylated which further
phosphorylates PhoB protein which in its phosphorylated form binds to
promoter region of PhoA gene and activates it. This alkaline phosphate
then degrade organic phosphate to inorganic phosphate. The transfer of
inorganic phosphate from cytoplasm to periplasm is done by PstSCAB
complex. Although, when inorganic phosphate is present in abundance,
phosphorylated PhoR protein gets dephosphorylated which prevent fur-
ther production of inorganic phosohate. Phosphate regulatory network
is shown in figure 6. And extended Petri net model of this network is
shown in figure 7.

I

=

PhoU

P,

No gene Gene activation
activation
phoA psiB  psiFE etc.

Alkaline  Other protein
phosphatase  products of
the network

Figure 6: Phosphate regulatory network in E. Coli [41]

Simulated time series data set for the above network is generated using
Snoopy Petri net tool [21].

2. MAPK cascade pathway
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Figure 7: Phosphate regulatory network [21]

MAPK (Mitogen activated protein kinases) is a central signalling path-
way that is used in cell tissues to communicate extra cellular events
to the nucleus [54]. Initiation of the pathway happens when a protein
from receptor protein binds to the cell membrane. This triggers a chain
of phosphorylation reaction in a cascade fashion. Each phosphorylated
protein acts as a switch for phosphorylation of another protein. In this
pathway, three proteins namely MAP4K, MAP3KP and MAP2KPP acts
as switch. MAPK cascade pathway is shown in figure 8.

MAP4K

O

MAP3K ‘ MAP3KP

O

MAP2K

MAP2KPP

MAP2KP

L 5

MAPK MAPKP MAPPP

Figure 8: MAPK cascade pathway [54]

3.3.2 Results

Results obtained from experiments are discussed in this section.

Experiment 1: Incorporation of background knowledge

The experimental results using the approaches detailed in the above section
are reported here. These experiments are performed on Phosphate regulatory
network and MAPK cascade pathway. Time series data set used for Phosphate
regulatory network is taken from [21] and for MAPK network is taken from
[54]. Data set of Phosphate regulatory network is originally constructed using
Petri net tool Snoopy.

22



Case 1: Phosphate regulatory network

Time series data set for phosphate regulatory network consists of 16 places.
Total number of experiments done to obtain this data set is 11. All experi-
ments in total have 47 state vectors.Each steady state obtained at the end of
experiment is terminal state.

Durzinsky has used background knowledge in his implementation. As
background knowledge, places pi.p, po,p, PhoR, PhoRP and PhoA are thrown
out from set of potential catalysts and inhibitors [21]. We have used this back-
ground knowledge in our LGTS implementation.

Durzinsky’s results: Durzinsky obtained 6o different networks consistent
with the data. They obtained 2 alternatives of control arc for d1 transition, 2
for dy transition, 3 for dio transition and 5 for d11 transition making a total
of 60 different possible alternatives for the network. Control arcs obtained
by Durzinsky for di, dy, dio and di1 transitions are shown in figure 9. In
this figure, activator arcs (read arc) are represented by bidirected arcs while
inhibitor arcs are represented by flat end arcs.

"

O—O0—0O O—O0—0O

pi-pp I pi-cp © PhoA PhoA-pp
Pst-P :

O—-0 -0  O—-001—-0
pi-pp \/ pi-cp . PhoA /] PhoA-pp
Pst-P . PhoB-P  phoA
' : d't
Phell-A I PhoU-l © PhoB-P I PhoB
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pi-pp | Pst-P

O—O—0

" PhoB-P T PhoB

PhoU-1

Phol-A T
O

Pst

pi-pp | Pst-P | Phol-I

O—0OO—0
O

Pst | PhoU-A

Figure 9: Control arcs obtained for four transitions in Phosphate regulatory
network by Durzinsky [20]

Result obtained using extended Petri net model (Durzinsky model): Using
this model, we have obtained 768 different networks consistent with the data.
Split up is 2 alternative control arc for d2, 3 for d6, 2 for d8, 2 for dg, 4 for d1o,
8 for di1 making a total of 768 (2x3x2x2x4x8) networks. Alternative control
arcs for these transitions are shown in figure 10. In this figure, activator arc
(read arc) is represented by black dot as arc head and inhibitor arc as hollow
dot at arc head. Red colored arcs represent incorrect control arcs found.

Result obtained using LGTS model: Here we have obtained 30 different net-
works conformal with data. 2 alternatives for d2 transition, 3 for d1o transition
and 5 for d11 transition. Control arcs obtained using LGTS model for d2, d1o
and di11 transitions are shown in figure 11. In this figure, activator arc (read
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Figure 10: Control arcs obtained for transitions in Phosphate regulatory net-
work using Durzinsky model

arc) is represented by black dot as arc head and inhibitor arc as hollow dot at
arc head. Red colored arcs represent incorrect control arcs found.

Although Durzinsky’s implementation and our implementation of LGTS
model considered same background knowledge, we obtained different num-
ber of conformal networks. This difference is due to the fact that Durzinsky
considered decomposition of difference vectors into reaction vectors while we
considered only difference vectors in our implementation. Due to this, Durzin-
sky obtained two alternatives for d1 and dy transition (see figure ). For dio
and di1 transition, Durzinsky and our LGTS implementation obtained same
alternative control arcs, 3 for d1o and 5 for d11 (see figure). Interestingly, we
have obtained two alternatives for d2 transition which is not there in Durzin-
sky’s result. So, Durzinsky has obtained total of 2x2x3x5 = 60 networks while
we obtain 2x3x5 = 30 networks.

Difference in the results obtained by our implementation of Durzinsky’s
model and our implementation of LGTS model is due to the absence of back-
ground knowledge in former implementation.

24



Pst_P

pi_pp

d2 Pst

Phol_pp

pL_pp

pi_pp

Phol_I

PhoB

Pst_P

Figure 11: Alternative control arcs obtained for transitions in Phosphate regu-
latory network using LGTS model

Since, LGTS implementation obtain 30 networks including original network
conformal to data, thus, LGTS results are correct results.

So, extended Petri net model in the absence of background knowledge gave
poor results while LGTS clearly shows distinction by including background
knowledge and substantially reduced the number of conformal networks from
768 to 30. As background knowledge in LGTS, set of catalysts and inhibitors
are introduced as predicates in the code. However, this number can be further
reduced using more background knowledge of the network. Thus, it implies
that using background knowledge can substantially reduce search space and
also helps in reconstructing networks which have less data available for them.

All the results obtained are summarized in table 2. Incorrect control arcs
obtained are marked with red colour.

Table 2:

Original Duwrzinsky’s Extended petrinet results | LGTS (with background
network Results knowledge)
Transition | Control arcs Control arcs Control arcs Control arcs
di Read : Pst-P Read : Pst-P Read : Pst-P Read : Pst-P
d2 Inhibit : pi-pp Inhibit : pi-pp Inhibit : pi-pp, PhoA -pp Inhibit : pi-pp, PhoA-pp
d3 Read : Pst Read : Pst Read : Pst Read : Pst
d4 Doubleread : Doubleread : (PhoR- | Doubleread : (PhoR-S, Doubleread : (PhoR-S,
(PhoR-S, S, PhaU-A) PhoU-A) PhoU-A)
PhoU-A)
ds Read : PhoB-S | Read : PhoB-S Read : PhoB-S Read : PhoB-§
d6 Doubleread : Doubleread : Doubleread : (PhoA-T, Doubleread : (PhoA-T,
(PhoA-T, (PhoA-T, PhoB-P) | PhoB-P), (PhoB-P, PhoR) | PhoB-P)
PhoB-P) Doubleinhibit : (PhoB,
PhoR-P)
d7 Anonymous Anonymous, Anonymous Anonymous
Doubleread : (PhoB-
P, PhoA),
ds Read: PhoA- | Read: PhoA-pp Read : PhoA-pp, pi-cp Read : PhoA-pp
PP
d9 Read : pi-pp Read : pi-pp Read : pi-pp, pi-cp Read : pi-pp
d1o Read : Pst-P Read : pi-pp, Pst-P | Read : pi-pp, pi-cp, Pst-P Read : pi-pp, Pst-P
Inhibit : Pst Inhibit : Pst Inhibit : Pst
di1 Read : PhoU-1 | Read: pi-pp, Pst-P, | Read: pi-pp, pi-cp, Pst-P, | Read: pi-pp, Pst-P. PhoU-1
PhoU-1 PhoU-I, PhoR Inhibit : Pst, PhoU-A
Inhibit : Pst, PhoU- | Inhibit : Pst, PhoU-A,
A PhoR-P
Total number of networks: 2x2x3x5 = 60 2x3x2x2x4x8 = 768 2x3x5 =30

Performance of different approaches on phosphate regulatory network
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Case 2: MAPK cascade pathway

This experiment is performed using LGTS model with and without back-
ground knowledge. This is done to see impact of background knowledge with
less data. Time series data set for MAPK cascade pathway consists of g places.
Total number of experiments done to obtain this data set is 3. All experiments
in total have 14 state vectors.

We have used state vectors of all 3 experiments with LGTS model (without
background knowledge) i.e. total of 14 state vectors and 1 experiment with
LGTS model (with background knowledge) i.e. 6 state vectors.

As background knowledge, we have used protein phosphorylation infor-
mation i.e. which protein helps in phosphorylating which other protein [54].

In LGTS model (without background knowledge), we have obtained total of
36 networks conformal with data while in LGTS (with background knowledge),
we have obtained correct network without any alternatives. This shows the
strength of background knowledge even in the presence of less data. Results
obtained are summarized in table 3.

MAPK cascade original | LGTS LGTS (with background
pathway knowledge)

Transition | Control arcs Control arcs Control arcs

d1 Read : map4k Read : map4k Read : map4k

d2 Read : map3kp Read : map4k, map3kp Read : map3kp

d3 Read : map3kp Read : map4k, map3kp Read : map3kp

d4 Read : map2kpp Read : map4k, map3kp, map2kpp Read : map2kpp

ds Read : map2kpp Read : map4k, map3kp, map2kpp Read : map2kpp

Total number of networks: 2x2x3x3 = 36 1

Table 3: Performance of LGTS model on MAPK cascade pathway
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Experiment 2: To estimate the impact of measurement noise

In this experiment, noise is introduced randomly in the simulated data set
and then noisy data set is used for generating the network. Simulated data
set is the discretized data set with all entries as o (absence) or 1(presence). To
introduce x% noise, we randomly flip X% of total entries in the data set. In this
experiment, for different noise levels, we have generated 100 noisy samples.
Then these noisy samples are fed to the LGTS system and number of networks
produced are stored.

Case 1: MAPK cascade pathway

Time series data set for MAPK cascade pathway consists of 9 places. Total
number of experiments done to obtain this data set is 3. All experiments in
total have 14 state vectors. So, total number of entries in the data set is 126
(14x9). Introducing 1% noise in the data et randomly flips 1 entry in the data
set. We run the code for 100 noisy samples. For 100 noisy samples, LGTS sys-
tem could produce some network for 67 of them. Out of these 67 networks, 38
networks consists of all correct transitions (as in original network) with some
noisy transitions. Introducing 2% noise in the data set randomly flips 2 entries
in the data set. For 100 noisy samples, LGTS system could produce some net-
work for 49 noisy samples. Out of these 49 networks, only 13 networks consists
of all correct transitions with some noisy transitions. Introducing 3% noise in
the data set randomly flips 3 entries in the data set. For 100 noisy samples,
LGTS system could produce some network for 19 noisy samples. Out of these
19 networks, only 1 network consists of all correct transitions with some noisy
transitions. With 4% noise, 5 entries in the data set got flipped. For 100 noisy
samples, LGTS system could produce some network for 11 noisy samples. Out
of these 11 networks, not a single network consists of all correct transitions. All
these results are summarized in table 4.

Amount of noise Number of networks |Number of networks containing all correct
for sample size: 100 | transitions (as in original network)

1% 67 38

2% 49 13

3% 19

4% 11 0

Table 4: Performance of LGTS model on MAPK cascade pathway for noise
level 1-4%

Case 2: Phosphate regulatory network

Time series dataset for phosphate regulatory network consists of 16 places.
Total number of experiments done to obtain this data set is 11. All experiments
in total have 47 state vectors. So, total number of entries in the data set is 752
(47x16). Introducing 1% noise in the data set randomly flips 7 entries in the
data set. For 100 noisy samples, LGTS system could produce some network
for 96 of them. Out of these 96 networks, 45 networks consists of all correct
transitions (as in original network) with some noisy transitions. Introducing
2% noise in the data set randomly flips 15 entries in the data set. For 100
noisy samples, LGTS system could produce some network for 88 of them. Out
of these 88 networks, 17 networks consists of all correct transitions with some
noisy transitions. Introducing 3% noise in the data set randomly flips 22 entries
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in the data set. For 100 noisy samples, LGTS system could produce some
network for 78 of them. Out of these 78 networks, only 8 networks consists
of all correct transitions with some noisy transitions. Introducing 4% noise in
the data set randomly flips 30 entries in the data set. For 100 noisy samples,
LGTS system could produce some network for 79 of them. Out of these 79
networks, only 4 networks consists of all correct transitions with some noisy
transitions. Introducing 5% noise in the data set randomly flips 37 entries in
the data set. For 100 noisy samples, LGTS system could produce some network
for 84 of them. Out of these 84 networks, only 2 networks consists of all correct
transitions with some noisy transitions. All these results are summarized in
table 5.

Amount of noise Number of networks | Number of networks containing all correct
for sample size: 100 | transitions (as in original network)

1% 96 45

2% 88 17

3% 78 8

4% 79

5% 84

Table 5: Performance of LGTS model on phosphate regulatory network for
noise level 1-5%

In this measurement noise experiment for both networks, we cannot get
original network exactly even with small amount of noise introduction. Here,
we were not decomposing the difference vectors into reaction vectors and only
try to reconstruct network using difference vectors. But even with decomposi-
tion of difference vectors into reaction vectors (as done in Durzinsky’s method),
we cannot get original network with small amount of noise. This is because
say, for a single noisy difference vector d[-1, 1, o, 1], if we decompose it in two
reaction vectors r1 and r2 such that ri[-1, 1, 0, 0] is the correct difference vector
(in noise-less case) and r2 [o, 0, 0, 1] is some other vector, still in the results we
will mention both the reaction vectors for that transition. And since r2 is not
the correct transition, we will not get original network.

So, this method is highly sensitive to measurement noise as it completely
depends on difference vectors of states in state matrix and do not have any
procedure to deal with measurement noise.
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3.4 TIMELINE

IInd Ist IInd Ist IInd Ist IInd

semester |semester |semester |semester |semester |semester |semester
2013-14 |2014-15 |2014-15 |2015-16 |2015-16 |2016-17 |2016-17

Course Work

Literature
Survey

Problem Identification &
Understanding
Comprehensive
Examination

Building models for
background knowledge

Extending models for noisy
data

Extending models for large
scale data

Thesis writing
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