
Spatio-Temporal Evolution of Grammars

Sumeet Agarwal

February 1, 2008

1 Introduction

Grammar can be thought of as the computational system of language: it is a
set of rules that specifies how to construct sentences from words. Grammar
is responsible for making language such a powerful means of communication:
it provides the means for mapping a finite vocabulary of words to an infinite
repository of syntactic expressions. An interesting problem is how children learn
grammars: it is well known that the empirical evidence available (the sentences
heard from parents and others in the environment) drastically under-specifies
the underlying syntactic rules. Noam Chomsky [1] and others have proposed the
concept of a ‘Universal Grammar’ which is somehow hardwired into the brain
and substantially restricts the grammar search space during the learning process.

Here, we use the mathematical model for grammar evolution proposed by Ko-
marova et al. [2] (paper attached) to study how the distribution of grammars
within a population changes over time. The model uses two possible kinds of
learning mechanisms: memoryless learning and batch learning. This work ex-
tends the existing model in two ways: it introduces spatial variation (the original
model had only temporal variation), and it uses a learning mechanism which is
a linear combination of memoryless and batch learning, and is thus seemingly
more biologically realistic.

2 Basic Model

The idea is to model the evolutionary dynamics of the population. Thus, each
individual will have a certain ‘fitness’, defined by a fitness function (Eq. 1 of
[2]). This measures how well the individual is able to communicate overall with
others in the population (a constant background fitness is also assigned to each
individual, denoted by f0). The reproductive ability of individuals is assumed
to be proportional to their fitness, and each child is expected to acquire the
parent’s language with a certain learning accuracy. These assumptions lead to
the dynamics represented by the system of ordinary differential equations (2) in
[2].

To make analysis easier, we simplify the system further by making it fully sym-
metric: i.e., we assume that the amount of overlap between any two grammars
is the same (this is denoted by a, 0 ≤ a ≤ 1), and also that the learning ac-
curacy (denoted by q, 0 ≤ q ≤ 1) is the same for all languages. The resulting

1



system (Eq. 5 of [2]) can now be analysed to find the steady states. Due to the
symmetry introduced, the system is highly degenerate, which means that we
need to solve it for just one language and all the others can then be written in
terms of that. So, without loss of generality, we assume X to be the fraction of
the population speaking language 1 (out of n languages in total), and look for
fixed points of X . These are the roots of Eq. (6) of [2]. One of them is obvious:
X = 1

n
, which corresponds to all languages being spoken with equal frequency,

is bound to be a steady state given our symmetry assumptions. So we divide
the given cubic equation by (X − 1

n
) to get the following quadratic:

−n

n − 1
X2 +

(

q +
1

n − 1
+

1 − q

(n − 1)2

)

X −
n(1 − q)

(n − 1)2
−

n(a + f0)(1 − q)

(n − 1)(1 − a)
= 0 (1)

The roots of this are given by Eq. (8) and (9) of [2]. However, the corresponding
steady states only exist if the roots are real; thus the discriminant has to be
non-negative. This implies that the learning accuracy, q, has to be over a certain
threshold q1, given by Eq. (10) of [2]. So for q < q1, the uniform distribution is
the only steady state.

2.1 Stability analysis of uniform distribution

X0 = 1
n

is the steady state; let x = X0 + x̃, where x̃ << X0. Using f(x) to

denote dx1

dt
(the right hand side of Eq. (5) of [2] for j = 1), we can use the

Taylor expansion to write:

f(x) = f(X0 + x̃)

= f(X0) + x̃f ′(X0) + ...

f(X0) = 0 by definition, so ignoring second- and higher-order terms we get:

f(x) = x̃(1 − a)

[

−3X2
0 + 2X0q −

2(1 − X0)

n − 1

(

−X0 +
1 − q

n − 1

)

−
(1 − X0)

2

n − 1

]

− x̃
(1 − q)(a + f0)n

n − 1

Substituting X0 = 1
n

and simplifying, we get:

f(x) = x̃

[

−(1 − a)(n + 1 − 2qn) − (1 − q)(a + f0)n
2

n(n − 1)

]

For stability, f(x) needs to have sign opposite to x̃. Thus, we need:

−(1 − a)(n + 1 − 2qn) < (1 − q)(a + f0)n
2

2qn − n − 1 <
(1 − q)(a + f0)n

2

1 − a

qn

[

2 +
(a + f0)n

1 − a

]

<
(a + f0)n

2

1 − a
+ n + 1

q <
(a + f0)n

2 + (n + 1)(1 − a)

n[2(1 − a) + (a + f0)n]
(2)

2



Thus we see that the learning accuracy has to be below a certain threshold (the
right-hand side of Equation (2), which we will denote by q2) for the uniform
distribution to be stable. Beyond that point, it becomes unstable and the only
stable solution is x1 = X+ (see Eq. (8) of [2]), which is typically a number
close to 1 and thus corresponds to a solution where one grammar is dominant
in the population and all the others have faded away. So the model leads to
the sensible result that if the learning accuracy is high enough, the population
converges to a one-grammar solution. In the next section we will see how we
can compute the learning accuracy in terms of other model parameters, on the
basis of certain assumptions about how language learning occurs.

3 Learning Algorithms

3.1 Memoryless Learning

This algorithm assumes that the learner starts with a randomly chosen gram-
mar (from the n available grammars). He then receives b sample sentences in
succession from the teacher (in our case, the parent). For each sentence, if it is
consistent with the learner’s current grammar, there is no change; otherwise,the
learner randomly picks a different grammar from the available set. Given that
the overlap between any two distinct grammars is given by a, we can compute
the learning accuracy, q, for a memoryless learner in terms of n, b and a (see
Eq. (27) of [2]).

3.2 Batch Learning

This algorithm is at the opposite extreme from memoryless learning: it assumes
effectively infinite memory capacity. The learner listens to b sentences uttered
by the teacher, and then has to choose a grammar which is consistent with
all of them. If there is more than one candidate grammar, then one is picked
uniformly at random. It turns out that for this algorithm, knowledge of pairwise
overlap between grammars is insufficient to compute q: we also need to know
the intersections between all combinations of three or more grammars. However,
if we assume a random configuration of grammars, an expression for q can be
derived; this is given by Eq. (34) of [2]. Batch learning turns out to be much
more efficient than memoryless learning, as one might expect: for a population
of batch learners, the critical value of b such that q is high enough to lead to a
one-grammar solution (i.e., q ≥ q2) grows with the number of grammars n as
log n; whereas it grows in proportion to n for memoryless learners.

3.3 Finite Memory Learning

Clearly, the actual human learning process lies somewhere between the two
extremes mentioned above. Thus, we propose using a linear combination of the
values of q obtained in the two cases in order to give a more realistic estimate
of learning efficiency:

q = (1 − θ)

[

1 −

(

1 −
1 − a

n − 1

)b
n − 1

n

]

+ θ

[

1 − (1 − ab)n

abn

]

(3)

3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

θ (θ = 0: memoryless; θ = 1: batch)

b c (
m

in
im

um
 n

um
be

r 
of

 le
ar

ni
ng

 e
ve

nt
s 

fo
r 

a 
on

e−
gr

am
m

ar
 s

ol
ut

io
n)

Figure 1: Variation of bc with change in θ. Parameters used: a = 0.5, f0 = 1
and n = 10.

Here θ is a parameter which determines the ‘quality’ of the learner’s memory:
θ = 0 corresponds to memoryless learning, whilst θ = 1 corresponds to batch
learning. In order to study numerically how the critical value of b for the
evolution of grammatical coherence (which we denote here by bc) changes as
we vary θ, Equation (3) was coded into Matlab, and the roots of q(b) = q2

were computed for a range of values of θ, using the function fsolve(). The
other parameter settings used were a = 0.5, f0 = 1 and n = 10. The results
are shown in Figure 1: as expected, the number of sentences needed falls with
increasing θ, though a fairly high value of θ is needed before efficiency increases
substantially from memoryless learning.

4 Introducing Spatial Variation

The model of [2] does not account for any spatial variation. We extended the
model by assuming that the grammatical profile could vary along one spatial
dimension. With a spatially varying distribution, we need to consider how to
appropriately re-define our fitness function. It is reasonable to assume that each
individual will interact only with the population within a small neighbourhood
of his own location: so we would like to take some form of weighted average of
the grammatical distribution over this neighbourhood, and use that to define
the individual’s fitness. This suggests the use of the second derivative in space:
a positive second derivative at a point implies a higher average value in the
neighbourhood, whilst a negative one implies a lower average value. So, denot-
ing our single spatial variable by s, we propose the following modified fitness

4



function for the fully symmetric case (compare Eq. (3) of [2]):

fi(s, t) = f0 + a + (1 − a)

(

xi + D
∂2xi

∂s2

)

(4)

Here fi denotes the fitness of an individual who speaks the ith language: it
is now a function of location in both space and time, as is xi, the fraction of
the population speaking the ith language. Clearly, we can not add the second
partial derivative in space of xi to it directly, because the value of the term
may then go out of the [0, 1] range, making it meaningless. Thus, it needs to
be appropriately scaled, and we multiply it by an unknown constant D: we will
see later that this constant will have to be set according to the granularity of
the spatial mesh used for numerical integration.

Plugging the fitness function from Equation (4) into the original system, we
get (compare Eq. (2) of [2]):

∂xj(s, t)

∂t
=

n
∑

i=1

[

f0 + a + (1 − a)

(

xi + D
∂2xi

∂s2

)]

xiQij − φxj , 1 ≤ j ≤ n (5)

For the symmetric system, Qii = q (the learning accuracy) and Qij = 1−q

n−1 for
i 6= j. Also, the last term is added on in order to ensure conservation of the
population size, as before: φ =

∑n

i=1 fixi is in fact the average fitness of the
population, and is termed the grammatical coherence.

In order to numerically solve the System (5), we used the method of lines, which
explicitly discretizes the spatial derivative, using central differences. Thus, we
create a spatial mesh of size S, with a gap size of ∆s. We use xs

j to denote the
prevalence of grammar j at point s in the mesh, for s = 1, 2, ..., S. Thus, the
system becomes:

dxs
j(t)

dt
=

n
∑

i=1

[

f0 + a + (1 − a)

(

xs
i + D

xs+1
i − 2xs

i + xs−1
i

(∆s)2

)]

xs
i Qij − φsxs

j

(6)
Note that we can now determine what the value of D should be: in order to
obtain the meaning of taking a weighted average of the neighbourhood as we

had originally intended, we should set D = (∆s)2

4 . This causes the term inside

the fitness function to become
x

s+1

i
+2xs

i
+x

s−1

i

4 , which is appropriate.

The System (6) was coded in Matlab and integrated using the solver ode113(),
for a variety of initial conditions. Figures 2 and 3 depict the results for two
representative cases. The initial conditions are shown in the upper graphs, and
the final steady states in the lower graphs (the accompanying movies show the
evolution of both systems in time). In Figure 2, the system has two grammars,
with initial conditions given by x1(s) = s and x2(s) = 1 − s. In Figure 3, there
are three grammars, initially distributed as x1(s) = 1−e

√
s−1, x2(s) = 2s(1−s)

and x3(s) = e
√

s−1 − 2s(1 − s). The results shown were obtained with the
memory parameter θ set to 1 (i.e., batch learning), but the same results were
obtained with lower values of θ going down to 0, with the required number of

5



0 0.5 1
0

0.2

0.4

0.6

0.8

1

s

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n

 

 
x

1

x
2

0 0.5 1
1.5

1.6

1.7

1.8

1.9

2

s

G
ra

m
m

at
ic

al
 C

oh
er

en
ce

0 0.5 1
0

0.2

0.4

0.6

0.8

1

s

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n

 

 

0 0.5 1
1.5

1.6

1.7

1.8

1.9

2

s
G

ra
m

m
at

ic
al

 C
oh

er
en

cex
1

x
2

Figure 2: Evolution of a two grammar system with spatial variation. Upper
graphs show the initial conditions, and lower graphs are the final steady state.
Parameter settings used are f0 = 1, a = 0.5, b = 10, ∆s = 0.1 and θ = 1 (batch
learning).

learning events b increased accordingly. For values of b below a certain thresh-
old, the system converged to a uniform distribution of grammars throughout
the spatial domain, in line with our earlier analysis.

The key thing to note about the results is that the systems converge to re-
gions with one-grammar solutions, with fairly well-defined boundaries between
these regions. Essentially, the grammar with the maximum initial prevalence
in each region becomes dominant there, and all other grammars die out. This
maximizes the grammatical coherence within each region; naturally, the co-
herence dips somewhat at the boundaries. These results correspond well with
what we see in the real world: largely homogeneous linguistic regions with sharp
boundaries separating them. For instance, all the Romance languages (French,
Spanish, Italian, Portuguese and Romanian) probably started out as slightly
differing versions of Latin with fairly continuous distributions. Over time, the
regions in which each of these was spoken became increasingly well-defined, with
minimal overlap between them; and eventually the boundaries became interna-
tional borders.

5 Conclusions

We have shown that the model of Komarova et al. [2] can be quite simply
extended to include spatial variation in grammatical profiles, with meaningful
results. We have also proposed a new function for learning accuracy which is a

6



0 0.5 1
0

0.2

0.4

0.6

0.8

1

s

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n

 

 
x

1

x
2

x
3

0 0.5 1
1.5

1.6

1.7

1.8

1.9

2

s

G
ra

m
m

at
ic

al
 C

oh
er

en
ce

0 0.5 1
0

0.2

0.4

0.6

0.8

1

s

P
ro

po
rt

io
n 

of
 p

op
ul

at
io

n

 

 

0 0.5 1
1.5

1.6

1.7

1.8

1.9

2

s
G

ra
m

m
at

ic
al

 C
oh

er
en

cex
1

x
2

x
3

Figure 3: Evolution of a three grammar system with spatial variation. Upper
graphs show the initial conditions, and lower graphs are the final steady state.
Parameter settings used are f0 = 1, a = 0.5, b = 10, ∆s = 0.1 and θ = 1 (batch
learning).

linear combination of the memoryless and batch learning approaches, and have
shown that the minimum number of learning events needed for the emergence
of a grammatically coherent population decreases continuously with increase
in memory capacity. Both these additions seemingly contribute to making the
model more realistic. However, there is no doubt that it is still a drastic over-
simplification of language evolution in the real world; and we probably need
much greater understanding of the cognitive foundations of language, along with
much improved empirical techniques for measuring how grammars really evolve,
before we can seriously begin to build more powerful mathematical models.

References

[1] Noam Chomsky. The Minimalist Program. The MIT Press, Cambridge,
MA, USA (1995).

[2] Natalia L. Komarova, Partha Niyogi and Martin A. Nowak. The Evolu-
tionary Dynamics of Grammar Acquisition. Journal of Theoretical Biology

209(1): 43-59 (2001).

7


