FINANCIAL FORECASTING USING NEURAL NETWORKS MEIMOKK2

PRESENTED BY:

KANWARJEET SINGH 2009MT50514 RAVI KUMAR 2009EE50487 NAVEEN KAUSHIK 2009MT50517

Problem Statement

- Prediction of prices of instruments of speculation
 - Stocks
 - Commodity futures
 - Exchange Rates
 - Interest Rates

 Problem : Non linear and non stationary data

Why use NEURAL NETWORKS?

- They derive non-linear models that can be trained to map past and future values of the input output relationship .It extracts relationships governing the data that was not obvious using other analytical tools.
- Capability to recognize pattern and the speed of techniques to accurately solve complex processes, exploited exhaustively in financial forecasting.
- Trained without the restriction of a model to derive parameters and discover relationships, driven and shaped solely by the nature of the data.

NARX MODEL

The defining equation for the NARX model is

$$y(t) = f(y(t-1), y(t-2), ..., y(t-n_y), u(t-1), u(t-2), ..., u(t-n_u))$$

TRAINING ALGORITHMS

Itrainlm : fastest and better for non-linear cases , default for feed-forwardnet .

Function	Algorithm		
trainlm	Levenberg-Marquardt		
trainbr	Bayesian Regularization		
trainbfg	BFGS Quasi-Newton		
trainrp	Resilient Backpropagation		
trainscg	Scaled Conjugate Gradient		
traincgb	Conjugate Gradient with Powell/Beale Restarts		
traincgf	Fletcher-Powell Conjugate Gradient		
traincgp	Polak-Ribiére Conjugate Gradient		
trainoss	One Step Secant		
traingdx	Variable Learning Rate Gradient Descent		

BACK-PROPOGATION

 Numerous such input/target pairs are used to train the Neural Network.

Types Of Data Worked Upon

- Interest Rates (RBI 91 day Govt. Of India Treasury Bills)
- Sensex Data (2005-2010)
- Exchange Rates (Daily Exchange Rates of INR-Dollars 2004-2011)

1	Date	Time	Open	High	Low	Close
2	20090105	1001	13702	13702	13680	13680
3	20090105	1002	13644.22	13689.15	13644.22	13689.15
4	20090105	1003	13650.31	13688.13	13648.28	13681.02
5	20090105	1004	13643.21	13680	13631.04	13665.77
6	20090105	1005	13630.03	13672.89	13630.03	13671.87
7	20090105	1006	13635.1	13676.95	13633.07	13676.95
8	20090105	1007	13638.14	13680	13635.1	13680
9	20090105	1008	13643.21	13680	13636.12	13673.9
10	20090105	1009	13638.14	13685.08	13637.13	13682.03

DIFFICULTIES

- Limited quantity of data .
- Noise in data It obscures the underlying pattern of the data.
- Non-stationarity data that do not have the same statistical properties (e.g., mean and variance) at each point in time
- Appropriate Forecasting Technique Selection .

Preprocessing of Training Data

- Reason: Need to understand underlying patterns.
- Tools:
 - Fast Fourier Transform (FFT)
 - Hilbert Huang Transform (HHT)

Comparative study

	Fourier	Hilbert	
Basis	a priori	adaptive	
Frequency	convolution:	differentiation:	
	global	local,	
	uncertainty	certainty	
Nonlinear	no	yes	
Nonstationary	no	yes	
Theoretical base	theory complete	empirical	

Types Of Preprocessing

- No Pre-Processing (Simple NN)
- Output States States
- <u>Using HHT</u> (HHT NN)

All the types of data are used on all the types of preprocessing techniques, therefore generating 9 cases.

Now, we Compare all of them Data-Wise.

1. Interest Rates

- The interest rate data is applied on all three kinds of preprocessing. The Error Graphs are as:
- Simple NN

• FFT NN

• HHT NN

2. Sensex Data

The sensex data is applied on all three kinds of preprocessing. The Error Graphs are as:

FFT NN

• HHT NN

3. Exchange Rates

- The Exchange Rate data is applied on all three kinds of preprocessing. The Error Graphs are as:
- Simple NN

• FFT NN

HHT NN

Conclusion from Results

 Pre-processing can boost the Neural Network Performance

 The performance of Neural Network also depends on the nature of the data series

Pre-processing using HHT is better than FFT. Thank You