FINANCIAL TIME SERIES FORECATING

Presented By:-Abhishek Sharma Kumar Sourav Nimesh K Verma

CONTENTS

- Introduction
- Approach
- Artificial Neural Network
- R language
- Statistical Models
- Results
- Conclusions

INTRODUCTION

- Financial Time Series:-A financial time series is a sequence of data points such as stock prices, indixes, etc measured typically at successive points in time spaced at uniform time interval
- Financial Forecasting:- financial forecasting is basically estimating future value of a company stock or other financial instrument traded on a financial exchange based on previously observed values, rates, other market conditions

APPROACH

- Testing Different Prediction Models
- Artificial Neural Network
 Non Linear
- Statistical Model Linear

Artificial Neural Network

- Data Collection
- Data Processing
- Training, Validation and Testing Set
- Neural Network Paradigms:-
 - Number of hidden layers
 - Number of Hidden Neurons
 - Number of Output Neurons
 - Transfer Function

Artificial Neural Network Contd.

- Neural Network Training
 - Training Algorithm
 - Learning Rate and Momentum

- Results
 - Error Histogram
 - Error Autocorrelation

Results

- Ann results depends on following factors
 - Data processing
 - Number of hidden layers, neurons and transfer functions
 - Training algorithms

Error Histogram (ploterrhist)

_

X

Time Series -Revisited

- A time series is a collection of observations of well-defined data items obtained through repeated measurements over time.
- Most of the times a time series can be decomposed into three components:

<u>Trend</u> (long term direction),

Seasonal (systematic, calendar related movements)

Irregular (unsystematic, short term fluctuations).

Decomposition of additive time series

Decomposition of Times Series

• Additive Decomposition

Decomposition of the time series into its components, trend, seasonality, irregular and error, which are then summed up to give the forecast

The model equation is:

 $X'_t = T_t + S_t + C_t + \varepsilon_t$

• Multiplicative Decomposition Decomposition of the time series into its components, trend, seasonality, irregular and error, which are then Multiplied to give the forecast

The model equation is:

 $X'_t = T_t * S_t * C_t * \varepsilon_t$

Moving Average

• Simple Moving Average

Smooth past data by arithmetically averaging over a specified period and projecting forward in time.

• Exponential Moving Average

summarized by the equation:

 $X'_{t} = \alpha X_{t} + (1 - \alpha) X'_{t-1}$

it is a weighted moving average with weights that decrease exponentially going backwards in time.

The Holt-Winters Forecasting Method

Single Exponential Smoothing

$$\hat{y}_{n+1|n} = w_0 y_n + w_1 y_{n-1} + w_2 y_{n-2} + \dots$$

or
$$\hat{y}_{n+1|n} = \sum_{i=0}^{\infty} w_i y_{n-i}$$

$$w_i = \alpha (1 - \alpha)^i$$

$$\hat{y}_{n+1|n} = \alpha y_n + \alpha (1-\alpha) y_{n-1} + \alpha (1-\alpha)^2 y_{n-2} + \dots$$

Since:

$$\hat{y}_{n+1|n} = \alpha y_n + (1 - \alpha)(\alpha y_{n-1} + \alpha(1 - \alpha)y_{n-2} + \dots)$$

it can be seen that:

$$\hat{y}_{n+1|n} = \alpha y_n + (1-\alpha)\hat{y}_{n|n-1}$$

```
> datasforecast <- HoltWinters(datas, beta = FALSE, gamma=FALSE)
> datasforecast
Holt-Winters exponential smoothing without trend and without seasonal component.
```

```
Call:
```

```
HoltWinters(x = datas, beta = FALSE, gamma = FALSE)
```

```
Smoothing parameters:
alpha: 0.9999582
beta : FALSE
gamma: FALSE
```

Coefficients:

[,1] a 819.0593 > |

Forecasts from HoltWinters

Continued

Holts Method

$$\hat{y}_{t/t-1} = m_{t-1} + b_{t-1}$$

 m_n is the current level and b_n is the current slope.

$$m_{t} = \alpha_{0} y_{t} + (1 - \alpha_{0})(m_{t-1} + b_{t-1}) \qquad 0 < \alpha < 1$$

$$b_t = \alpha_1 (m_t - m_{t-1}) + (1 - \alpha_1) b_{t-1}$$

```
> inputholts<- HoltWinters(inputseries, gamma=FALSE, l.start=100.335, b.start=7.975)
> inputholts
Holt-Winters exponential smoothing with trend and without seasonal component.
```

Call:

```
HoltWinters(x = inputseries, gamma = FALSE, 1.start = 100.335, b.start = 7.975)
```

Smoothing parameters: alpha: 0.9935594 beta : 0.01892645 gamma: FALSE

Coefficients: [,1] a 613.3270917 b 0.3572637 >

Also Attempted

- ARIMA
- BOX JENSKIN

Conclusion

- More number of hidden layer makes the calculation slow and there is a chance of over fitting
- The larger the window makes the prediction more close to the actual data
- As observed in our simulation the errors are less correlated as the window size is increased

Conclusion

 According to our results we found that ANN is better in prediction as compared to the Statistical Model