Pattern Project Report

-Ankit Nayan -Ankita Balotia -Pritesh Kumar

Opency implementation of BOW model for classification of objects

Steps in Bow model:

- 1. Calculate SURF keypoints (a fast implementation of SIFT) for all training images
- 2. Cluster all the keypoints by K-means clustering
- 3. Make a Dictionary of those codewords (final cluster centres)
- 4. Match the keypoints of an image to codewords by Nearest Neighbour match
- 5. Calculate descriptors of the images by making histogram of the keypoints ,ie, frequency of keypoints of an image in different codewords.
- 6. Normalized histogram is written in csv file
- 7. Classify the objects by classifiers such as Naive Bayes, SMO, Logistic using **Weka**
- Keypoints are basically the points of extrema
- Keypoints are extracted with SURF algorithm with minHessian = 400
- SURF finds keypoints by finding laplacian, approximated using difference of gaussians
- SURF has feature descriptor (of each keypoint) of size 64 that contains gradients in dx, dx, dy, dy for 4x4 subregions each of size 5x5 samples
- SURF descriptors are scale and rotation invariant

Some surf keypoints

Simple image matching is done by calculating the distance between each pair of keypoints descriptors and then applying the formula :

d1/d2 < 0.7

that is, ratio of nearest to 2^{nd} nearest neighbour should be less than 0.7

• if match is not confident then $d1/d2 \sim 1$

Results

Tested on 4 classes: nautilus, dolphin, crab & garfield each with 50 images Results depend on vocabulary size here 100 and 200 are chosen.

K in K-means clustering equals vocabulary size.

•	Vocab size = 100	Vocab size = 200
---	------------------	------------------

•	SVM: 76%	79.9%
•	Naive Bayes : 76.6%	75.5%
•	Logistic: 69%	70.1%

vocabulary size = 200

svm: 79.9%

=== Confusion Matrix ===

```
a b c d <-- classified as
42 1 6 1 | a = nautilus
5 35 10 0 | b = dolphin
4 5 41 0 | c = crab
1 1 3 29 | d = garfield
```

naïve bayes: 75.5%

=== Confusion Matrix ====

```
a b c d <-- classified as

38 5 4 3 | a = nautilus

8 34 8 0 | b = dolphin

3 5 40 2 | c = crab

1 1 5 27 | d = garfield
```

logistic: 70.1%

=== Confusion Matrix ===

```
a b c d <-- classified as

36 7 7 0 | a = nautilus

12 24 14 0 | b = dolphin

4 4 41 1 | c = crab

1 2 3 28 | d = garfield
```

For 4 classes 25% accuracy is equivalent to no result since even if the objects were classified randomly there is ¼ probability of it being correct.

For the case of 4 classes the best two attributes that were found are m13 and m17

- m13 13th codeword in the dictionary of size 200
- $m17 17^{th}$ codeword in the dictionary of size 200

The figures below helps us visualize the distribution of 4 classes over the values of m13 and m17.

Not visible to human eyes but classifier models this distinctness of values for different classes to classify.

When tested on 5 classes (aeroplane, ant, brain, nautilus, garfield) each with 50 images and vocab size = 200, SVM gave accuracy of 70.9%

for 10 classes $\sim 60\%$ accuracy

BOW limitations:

- It models only the basic appearance of the object in an image. Needs to be implemented with pyramid structure.
- It does not take into account shape of the object which alone is not efficient but when combined with appearance proves useful

