Comparative approach and Ensemble learning on Multiple datasets

Imbalanced dataset

 Dataset in which amount of training and test samples are skewed towards one class

Wine data*	Class1	Class2
Training set	4850	50
Test set	48	1549

*UCI Machine Learning Repository

+mlcomp repository

Classification using single classifier

• Data preprocessing: Scaling train data and test data

Train: $[-10,10] \rightarrow [-1,+1]$ Test: $[-11,+8] \rightarrow [-1.1,0.8]$

	Accuracy on Wine data			
Classifier (Inducer)	Training (without scaling)	Training (with scaling)	Test (without scaling)	Test (with scaling)
SVM (SMO)	99.55 %	99.44%	24.17%	29.43%
Logistic Regression	99.69%	99.65%	61.05%	21.54%
Neural Network (BPNN)	93.0%	30%	61%	60%

What is the need for Ensemble learning

- Adaboost: Cascade
 combination of weak
 classifiers
- Up sampling of samples from minor class and Down sampling of samples from major class

Adaboost Algorithm

Require: I (a weak inducer), T (the number of iterations), S (training set) **Ensure**: $M_t, \alpha_t; t = 1, \ldots, T$ 1: $t \leftarrow 1$ 2: $D_1(i) \leftarrow 1/m; i = 1, ..., m$ 3: repeat Build Classifier M_t using I and distribution D_t 4: 5: $\varepsilon_t \leftarrow \sum D_t(i)$ $i: M_t(x_i) \neq y_i$ if $\varepsilon_t > 0.5$ then 6: $T \leftarrow t-1$ 7: 8: exit Loop. 9: end if $\alpha_t \leftarrow \frac{1}{2} \ln(\frac{1-\varepsilon_t}{\varepsilon_t})$ 10: $D_{t+1}(i) = D_t(i) \cdot e^{-\alpha_t y_t M_t(x_i)}$ 11: Normalize D_{t+1} to be a proper distribution. 12:13:t + +14: **until** t > T

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot M_t(x)\right)$$

Performance at each iteration

Interpretation of adaboost

Final results

Classifier (Inducer)	Accuracy of single inducer (wine data)	Accuracy of boosted classifier (wine data)
SVM (SMO)	29.43%	89%
Logistic Regression	61.05%	87%

Classifier (Inducer)	Accuracy of single inducer (ccs challenge data)	Accuracy of boosted classifier (ccs challenge data)
SVM (SMO)	2%	6%