ELL 788 Computational Perception & Cognition

Module 1-2

Visual perception [Part 2]

Object and ground

Multi-stability

What occludes what?

Old couple or musician by Salvador Dali (1930)

Spinning clockwise or anticlockwise ?

A B C

What is written above ?

12 13 14

What is written above ?

Gestalt law of perceptual organization

The whole is greater than the sum of the parts

The fundamental principle of gestalt perception is the law of "prägnanz", which says that we tend to order our experience in a manner that is regular, orderly, symmetrical, and simple.

Artworks based on Gestalt principle

Gestalt principles

Proximity

••••	••••	••••		••••	•••••
------	------	------	--	------	-------

Principle of proximity

Michelangelo, Creation of Adam, c. 1510.

Application: Graphical Data Visualization

Principle of similarity

Example

Source: Goldstein's e-book

Continuation

Another example

What do you see in this image?

Source: Perception and Imaging: Photography a Way of Seeing By Richard D. Zakia

Perceptual invariance

Invariance is the property of perception

- simple geometrical objects are recognized independent of rotation, translation, and scale;
- as well as several other variations such as elastic deformations, different lighting, and different component features.

"Law of Symmetry" by Hsokolow via Wikipedia

How many legs do the elephant has ?

Exercise: Explain the phenomenon with Gestalt principles

Computational theory of vision [David Marr]

• Stage 1: (Raw Primal Sketch)

- Perceptual grouping of pixels (brightness, color, contrast)
- Contours and edges
- <u>Stage 2: (2 1/2D Sketch)</u>
 - Feature grouping (Gestalt principles)
 - Surfaces and layouts
- Stage 3: (3D Sketch)
 - Parts linked, axis of symmetry determined
 - 3D image completed (incl. occluded areas)

Viewer centric description

Object centric description

Objects recognized despite disperate points of view

Shape representation (2 1/2D)

Shape representation (3D)

- Hierarchical model (Modular decomposition) -- different levels of details
- Model axis: Natural axis -- represents orientation
- Coordinate system: canonical coordinate system at each level of decomposition
- Object centric neutral to viewer perspective

Hierarchical organization and indexing

Source: Marr's paper

Another way to interpret "law of symmetry"

Figures in A, B and D share the same 3D model

Parts-based model (Biedman)

Source: Goldstein's e-book

A real example

Source: Goldstein's e-book

A final example

Counter-example

Standard model of (visual) preception

Source: Albertazzi, Tonder & Viswanath (Ed). Perception beyond inference

Perception of depth

what information is contained in this 2D image that enables us to perceive depth ?

Cue approach

Types of cues:

- **Oculomotor**. The position of our eyes and the tension in our eye muscles.
- Monocular. Cues that work with one eye
- **Binocular**. Cues that depend on two eyes

Oculomotor cues

Far away object

Accommodation to the infinity

Accomodation to a short distance

convergent optical axis

Monocular cues

Pictorial cues

- Occlusion
- Relative height
- Relative size
- Familiar size
- Perspective convergence

Monocular cues ... more

Pictorial cues

- Texture gradient
- Atmospheric perspective (sharpness)

• Shadows

Monocular cues ... more

Motion cues

• Parallax

Monocular cues ... more

Motion cues

Deletion and accretion

Range effectiveness of different cues

DEPTH INFORMATION	0-2 METERS	2-20 METERS	ABOVE 30 METERS
Occlusion	~	~	~
Relative size	~	~	~
Accommodation and convergence	~		
Motion parallax	~	~	
Relative height		1	~
Atmospheric perspective			~

Source: Based on Cutting & Vishton, 1995.

Closer distance \rightarrow Greater disparity

Absolute and relative disparities

Absolute disparity of A = $\theta_A = a_L - a_R$ Absolute disparity of B = $\theta_B = b_L - b_R$ **Relative disparity** between A and B = $\theta_A - \theta_B$ does not depend on where the eyes are looking at

Invariant so long the objects do not move

Stereopsis and perception of depth

e Goldst

(a) Left eye image

(b) Right eye image

3D Movies

Random dot stereograms

(a)

1	0	1	0	1	0	0	1	0	1
1	0	0	1	0	1	0	1	0	0
0	0	1	1	0	1	1	0	1	0
0	1	0	А	А	В	В	1	0	1
1	1	1	В	А	В	А	0	0	1
0	0	1	А	А	В	А	0	1	0
1	1	1	В	В	А	В	1	0	1
1	0	0	1	1	0	1	1	0	1
1	1	0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	1	1	0

1	0	1	0	1	0	0	1	0	1
1	0	0	1	0	1	0	1	0	0
0	0	1	1	0	1	1	0	1	0
0	1	0	Υ	А	А	В	В	0	1
1	1	1	Х	в	А	в	А	0	1
0	0	1	Х	А	А	В	А	1	0
1	1	1	Υ	В	В	А	В	0	1
1	0	0	1	1	0	1	1	0	1
1	1	0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	1	1	0

The correspondence problem

How to resolve ?

- Uniqueness: Each image point represents a unique point in the real world
- **Continuity**: Cohesiveness of matter. Depth has discontinuity only at few places in an image

More on uniqueness

- Cannot be established with gray levels alone
 - Intensity gradients
 - At multiple spatial resolution
 - Peaks of the first derivatives = Zero crossings of the second derivatives

Perception of size

Perceived size S μ R * D

R = Retinal size, D = Perceived distance

Reference (close by objects)

Bruce Goldstein

Muller-Lyer illusion

Misapplied size constancy scaling

Why the moon looks bigger near the horizon than when it is up in the sky?

Flattened heaven theory

Angular size contrast theory

An object appears smaller when surrounded by larger objects

References

1. Goldstein. Sensation and perception (e-book) http://cartesians.biz/ctfile/sensation-and-perception-goldstein-9th-edition.pdf

Perception of color, contrast, motion ...