ELL 788 Computational Perception & Cognition

Module 3

Cuteneous perception

Which of the senses is the most important to you ?

Seeing ?

Hearing ?

Touch ?

Which one is the least ?

• A blind or a deaf man can live

• Have you ever seen a living man without a sense of touch ?

Why study cutaneous perception ?

Dimensions of cutaneous perception

- What (signal resolution)
 - Material properties (surface texture, softness)
 - Geometric properties (shape, size)
 - Depends on object sample
- Where (localization)
 - Where on the body
 - Where in the space
 - Exploring a dark room with hands and reconstructing the room geometry

The human skin

The human skin ... more

Summary

Neural Channel ^a	SA I (NP III)	RA (FA I, NP I)	SA II (NP II)	PC (FA II, P)
End Organ	Merkel Disk	Meissner Corpuscle	Ruffini Ending	Pacinian Corpuscle
Sensory Adaptation ^b	Slow	Fast	Slow	Fast
Receptive Field ^c	Small	Small	Large	Large
Frequency Range (Hz)d	< 5	3-100	15-400	10-500
Perceiving Property	Pressure, Fine Details	Flutter	Stretch	Vibration

Tactile and haptic perception

- Tactile (touch based)
 - Tactile feedback is when you outfit a robot with touch/force/torque sensors, and use those sensors to provide feedback to the human operator about real forces the robot experiences as it encounters its environment.
- Haptic (pressure based)
 - Haptic feedback imparts forces on the operator, for instance by using a mechanically actuated joystick or other hand controller.

Pathway to the brain

Mapping of the body in brain

(a)

Spatial resolution

- Two point touch threshold
 - The smallest spatial separation between two stimuli applied to the skin that can be detected some arbitrary percentage of the time (e.g., 75%).
 - Whether a linear grating is applied horizontally or vertically
- Point localization threshold
 - A stimulus is presented to the skin, followed in time by a second stimulus that may or may not be applied to the same site.

Resolution by mechanoreceptors

Tactile acuity: Mechanoreceptor density

Merkel receptor spacing (mm)

Cortical magnification also plays a role

Observations

- Two point thresholds are $\sim 4 45$ mm
 - With grating experiments, they are lower
- Localization thresholds are $\sim 2 12 \text{ mm}$
 - Much smaller than two point thresholds
- Thresholds varies with part of the body
 - Lower on fingertips, nose, lips ...
 - Higher on back, chest, belly, forearm, thigh ...
 - Shows consistent pattern on male and female bodies
- The spatial resolving power of the skin is poorer than the eye's but better than the ear's.

Resolution at different parts of human body

Source: L ederman and Klatzky

• Shows consistent pattern on male and female bodies

Temporal resolution

• People can resolve a temporal gap of 5 msec between successive taps on the skin

• The temporal resolving power of the skin is better than that of vision, but worse than that of audition

Perceiving vibration

Pacinian corpuscles

Perceiving texture coarseness of surface

- Perception of texture depends on Katz 1925
 - Spatial cues
 - Large surface elements, e.g. a protrusion / a groove
 - Useful for perceiving shape / size, Braille dots
 - When skin presses against the surface (pressure)
 - Temporal cues
 - Coarse surface, e.g. sandpaper, fabric
 - When skin moves over the surface (vibration)

Perceiving texture ... more

• Experimentation on temporal cues

Hollins and Reisner 2000

Surface Texture: age, disablity and perception

в

Source: Lederman and Klatzky

Perceiving oreintation

- Horizontal / Vertical orientations are easier to compare (perceptually) than oblique ones
 - Two frames of reference (body and space) more computation
 - Depends on position with respect to the body

Source: Lederman and Klatzky

- Vertical lengths are assessed longer than vertical ones
- Distances away from the body are assessed longer than the tangential direction

Geometric properties (size and shape)

- Small objects (Fits on a finger-tip)
 - Local indentation on skin reveals shape
- Bigger objects
 - Both cutaneous and kinesthetic inputs (mechanoreceptors)
 - Varying local pressure on skin \rightarrow curvature
- Perception depends on
 - Convex or concave
 - Position of stimulus on hand
 - Movement of hand over the surface ...

Perception of curvature

Perceiving objects

- Most of the everyday use objects can be identified with touch
 - The great grand-mother who has lost her eyesight can do a 'face recognition' with her fingers.
- Most of the research so far has centered around passive touch
 - Not active exploration

Exploratory processes

Lateral Motion (Texture)

Pressure (Hardness)

Static Contact (Temperature)

Enclosure (Global Shape) (Volume)

Contour Following (Global Shape) (Exact Shape)

- Time to execute
- Capability
- Accuracy

Source: Lederman and Klatzky

Feeling the pain

Nociceptive pain

Caused by activation of receptors in the skin called nociceptors.

Inflammatory pain

- Caused by damage to tissues and inflammations to joints or by tumor cells.
- Neuropathic pain
 - Caused by lesions or other damage to the nervous system.

Perception of pain depends on mental state of a person.

Perceiving material

Thermal cue: The rate of heat dissipation

WEBER LAW / WEBER-FECHNER LAW: A Computational Model of perception

Can the user distinguish between the different vibrotactile cues being displayed?

Relationship between the physical magnitude of a stimulus and its (subjectively) perceived intensity

• The minimum change in a stimulus that can be detected is proportional to the current value of the stimulus

$$\Delta p = k \frac{\Delta S}{S}$$
 $\frac{dp}{dS} = k \frac{1}{S}$ $p = k \log S + C$ k = Weber fraction

• To solve for C

 $0 = k \log S_0 + C$ [Threshold stimulus] $p = k \log \frac{S}{S_0}$

- Subjective sensation is proportional to the logarithm of the stimulus intensity, measured in proportion to threshold stimulus
- Holds for all modalities visual, audio, haptics (approximately)

Multimodal perception

- Supportive / contradictory signals
- Combining
 - Weighted sum
 - Expectation maximization

Higher level interactions

References

- Goldstein (e-book)
- MacLean. Haptic Interaction Design for Everyday Interfaces (chapter) http://web.stanford.edu/class/me327/readings/1-MacLean08-RHFE-Design.pdf
- Lederman and Klatzky: Haptic perception: A tutorial. http://www.queensu.ca/psychology/lederman/Publications/175. pdf