ELL 788 Computational Perception & Cognition

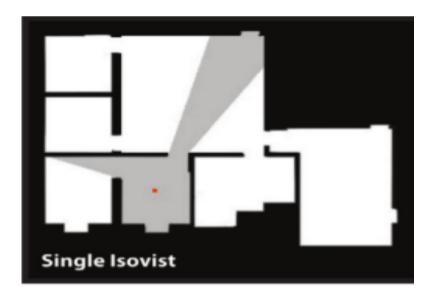
Module 4

Perceiving visual space

What is space

Space is the theatre where events take place

- Visual space = Visual <u>environment</u> around a person
- <u>Objects</u>: What we act upon
- Environment: Wherein we act / navigate
 - Described by floor, ceiling, walls, openings (doors / windows), partitions, etc.

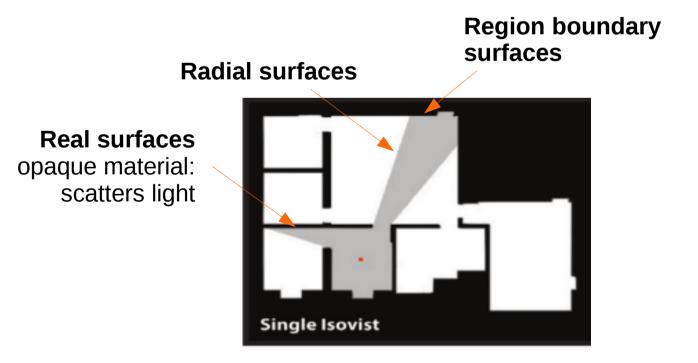

Perception of space

- Observer-centric
 - Viewpoint: The space as seen by the observer
- Two levels of description
 - Structural (geometric)
 - Semantic (what it represents)
 - e.g. street scene, natural landscape, etc.
- Perceived in
 - In real 3D world
 - From 2D images

Isovists

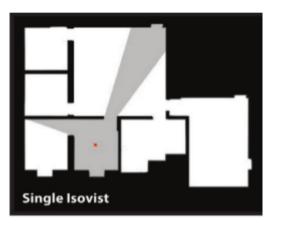
What is an 'Isovist' ?

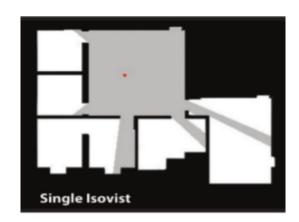
- View / Viewpoint: a cone of visible space as seen from an observer's vantage point
 - Orientation
 - Aperture
- **Isovist**: The set of surfaces visible from that location if the observer rotates through 360 degrees

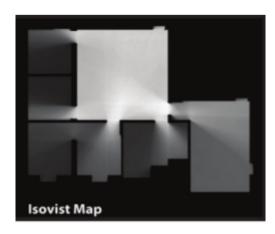


Source: Oliva, et al. 2010

Isovist: Formal definition


Two alternate definition of isovist: V_{y} (x: Vantage point)


- Set of all points in the environment that are visible from x (3D)
- Set of surfaces that are visible from x (2D)



Isovist map

• A collection (superimposition) of all isovists visible from all possible locations in a space

Source: Oliva, et al. 2010

Sufficient set and Cardinality number

How many vantage points are required to see an entire environment E?

- A finite (usually small) number of vantage points are sufficient
 - > The set of isovists is called a sufficient set
- The cardinality of smallest sufficient set(s) is called the cardinality number for an environment

Application

- *How many security cameras do you need to cover a retail outlet?*
- Where do you deploy them ?

Minimal path

- Paths connecting vantage points in a sufficient set is called a **sufficient path**
- The sufficient path that is shortest is called a **minimal path**

Application

What should be the path taken by a sentry in a museum / residential layout ?

Concealment

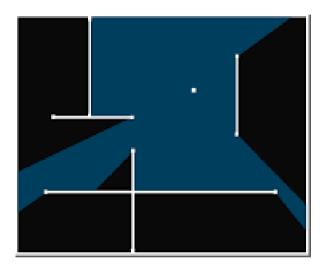
- Let D1 and D2 be two sub-regions in D, such that D1 \cap D2 = \emptyset
- Let I(D1) be the isovist map from D1

- If I(D1) \cap D2 = \emptyset ,
 - D2 is totally invisible (concealed) from D1
- If I(D1) \cap D2 $\neq \emptyset$, and I(D1) \cap D2 \neq D2
 - D2 is partially visible (concealed) from D1
- Assymetrical relation:
 - > In general, Volume(I(D1) \cap D2) ≠ Volume(I(D2) \cap D1)

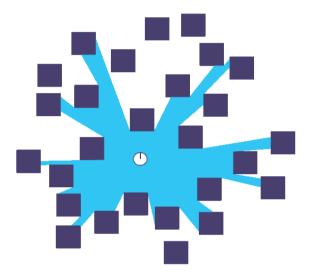
Privacy of a space

• How much you can see without showing your own space

Isolation


- Let D1 and D2 be two sub-regions in D, such that D1 \cap D2 = \emptyset
- Let I(D1) be the isovist map from D1
- Let I(D2) be the isovist map from D2

- If I(D1) \cap I(D2) = \emptyset ,
 - > D1 and D2 are fully isolated
- If $I(D1) \cap I(D2) \neq \emptyset$, and $I(D1) \cap I(D2) \neq D1 \cup D2$
 - > D1 and D2 are partially isolated


Architectural design

• Should the living room be isolated from the kitchen or the bedrooms?

Shape of space

Simple isovist

Complex isovist

Application in architecture

• The characteristics of an isovist (volume, shape) determines our psychological perception about a closed space

Isovist measures

- Consider a planar slice of an isovist
- Consider all radial lines from vantage point (x) to the boundary of the environment
 - $l(x,\theta)$: length of a radial line from x in direction θ
- $L_{x}\left(\theta\right)$ is a distribution function of lengths over θ
 - One way to describe an isovist V_x quantitatively
- Statistical measures $m(V_x)$ with can be derived
 - Have perceptual significance

- Area (A)
 - How much space can be seen from x
 - From how much space, x can be seen
- Perimeter (P):
 - How much wall (real surface area) can be seen from x
- Occlusivity (Q):
 - The sum of lengths of the "radial surfaces"
 - Indicator of how much of the environment may be occluded
- Variance and Skewness of $L_x(\theta)$:
 - Dispersion and assymetry of dispersion of the perimeter from the vantage point x
- Circulartity (N):
 - Ratio between perimeter-square and 4π times area

How does these measurements relate to human perception and behavior?

- Simple descriptors (area, occusivity, perimeter, ...) relates to people's impressions of the spaciousness of hotel lobbies and urban spaces ...
 Narrow, cramped, spacious, ample
- Relates to architectural designs and aesthetics of space
- Guides pedestrian behavior in narrow roads, seating preferences in restaurants ...

[See Franz, et al.]

• Isovists do not account for surface properties, such as illumination, color, texture, that are important for perception of space

Spatial envelop representation

Describing shape of scenes

- Can we characterize a scene without refering to the individual objects ?
- Can we capture the overall spatial layout and geometry ?

Spatial envelop representation

- Spatial envelop [architecture]
 - A description of the whole space that provides an "instant impression of the volume of a room or an urban site"
- Spatial envelop representation
 - A formal, computational approach to the capture of the shape of space, as it would be perceived from an observers vantage
 - Can be described by a collection of properties
 - perspective, size, dominant depth, openness, naturalness, ...

Levels of scene model

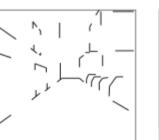
Subordinate level

- Scene is treated as a composition of objects, e.g.
- Cars + People + Buildings \rightarrow City Street,
- Sand + Sea + Sky \rightarrow Beach

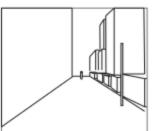
Basic level

- Scenes having similar global visual properties
- e.g., forest, mountain, street

Superordinate level


- Highest level of abstraction, little visual similarity in a class
- e.g., an urban environment, natural landscape

- Spatial envelop Representation

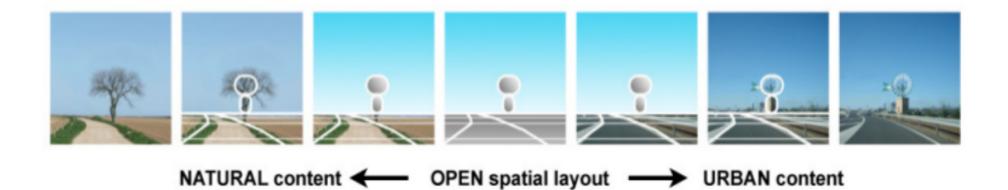

Properties of scene

Original scene "a street"

Suggestive contours (Biederman, 1981)

Geometric forms (Biederman, 1981)

Blobs in relations (Schyns & Oliva, 1994)


Sketch of textures (Oliva & Torralba, 2001)

Boundaries (size, shape)

Contents (Texture, color)

Properties of scene ... more

Source: Oliva, et al. 2010

Some properties of space [Boundaries]

Openness

- A horizon line and the lack of visual references
- Expansion (Man-made scene)
 - The convergence of parallel lines gives the perception of the depth gradient of the space.
 - A flat view of a building \rightarrow low degree of Expansion.
 - A street with long vanishing lines \rightarrow high degree of Expansion
- Ruggedness (terrain)
 - Deviation of the ground with respect to the horizon
 - Open environments with a flat horizontal ground level vs. mountainous landscapes with a rugged ground
 - Rugged environment produces oblique contours in the picture and hides the horizon line.

Some properties of space [Contents]

- Naturalness
 - Man-made structures: Straight horizontal and vertical lines
 - Natural landscapes: textured zones and undulating contours
- Roughness (for man-made scenes)
 - Size of basic components constituting the scene
 - correlated with the fractal dimension of the scene / its complexity

2D image and properties of space

- Spatial envelope properties \rightarrow visual features of 2D surfaces.
- Thus, the parameters of the spatial envelop can be computed from the statistical distribution of (local) image features
- Spatial envelop is a compressed representation of an image capturing the scene properties

Computing spatial envelop

Global and local Texture descriptors

DFT: (Global description)

$$I(f_x, f_y) = \sum_{x,y=0}^{N-1} i(x, y)h(x, y)e^{-j2\pi(f_x x + f_y y)}$$
$$= A(f_x, f_y)e^{j\Phi(f_x, f_y)}$$

WFT: (Local Decsription)

$$I(x, y, f_x, f_y) = \sum_{x', y'=0}^{N-1} i(x', y') h_r(x' - x, y' - y) e^{-j 2\pi (f_x x' + f_y y')}$$

- *H*(.,.) is a cicular Hanning window to take care of the boundary effect
- $<A^2$, $\Phi >$ represents energy spectrum of an image
 - > **A**² represents energy
 - $ightarrow oldsymbol{\Phi}$ represents phase

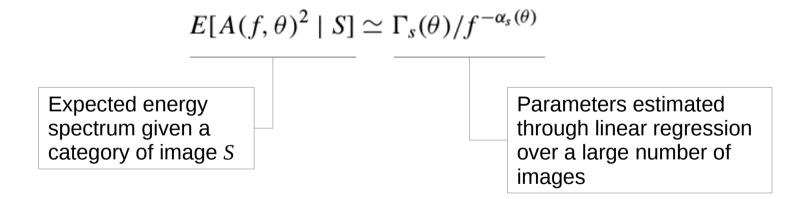
Use KLT for decomposition and PCA for dimensionality reduction

Energy Spectrum (global):

$$A(f_x, f_y)^2 \simeq \sum_{i=1}^{N_G} v_i \psi_i(f_x, f_y)$$
Spectogram (local):

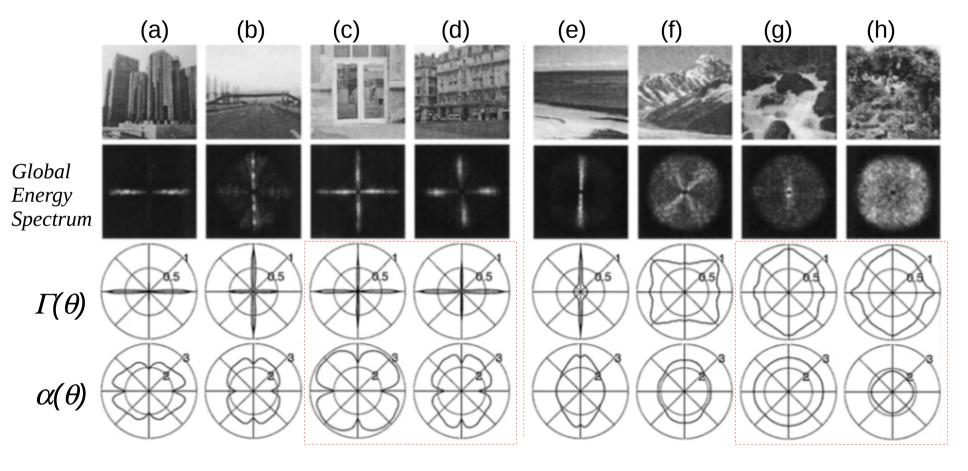
$$A(x, y, f_x, f_y)^2 \simeq \sum_{i=1}^{N_L} w_i \Psi_i(x, y, f_x, f_y)$$

$$N_G, N_L < 50$$


 $\mathbf{v} = \{v_i\}_{i=1,N_G}$: Provides a low-resolution global description of an image $\mathbf{w} = \{w_i\}_{i=1,N_L}$: Provides a low-resolution description of of an image with spatial arrangement

Spectral signature

In real-world images, the energy spectra fall in average with a form


$$1/f^{\alpha}$$
 ($\alpha \sim 2$)

The energy spectrum of different types of images can be approximated by a function

- $\Gamma(\theta)$: Dominant orientations of a scene category
- $\alpha_{s}(\theta)$: Slope of the decreasing energy spectrum values -- related to roughness or complexity of the scene

Spectral signatures for scene categories

Man-made (urban) scenes

Natural scenes

Source: Oliva & Torralba 2001

Estimation of spatial envelop properties

 $\Gamma(\theta)$ and $\alpha(\theta)$ cannot be easily used to discriminate between properties of scene, e.g. naturalness, openness, etc.

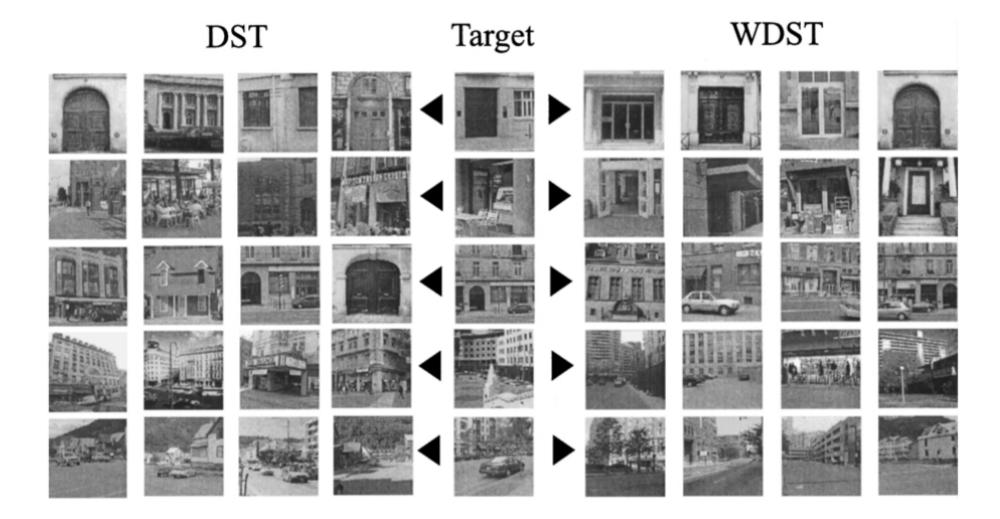
A scene attribute can be expressed as

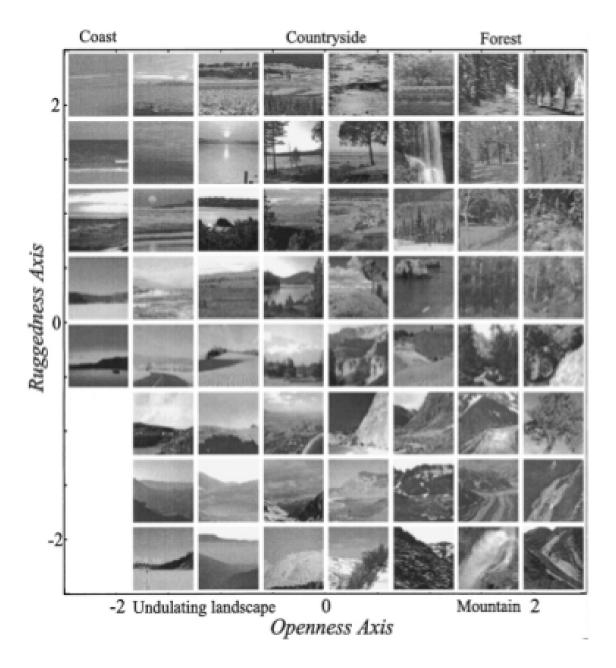
$$\hat{s} = \mathbf{v}^T \mathbf{d} = \sum_{i=1}^{N_G} v_i \, d_i$$

The parameters d_i can be estimated through simple linear regression after arranging many (~500) pictures in order of that attribute

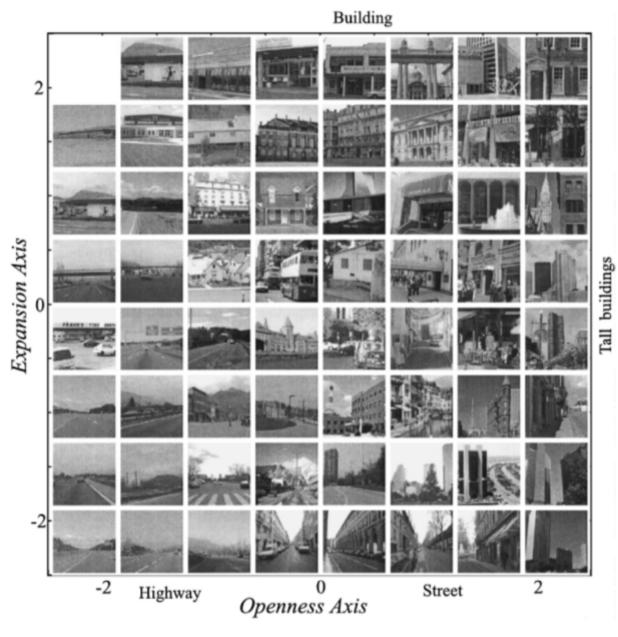
... And similarly for spectogram (local descriptors)

DST: Discriminating Spatial Template (Global) WDST: Windowed Discriminating Spatial Template (Local)

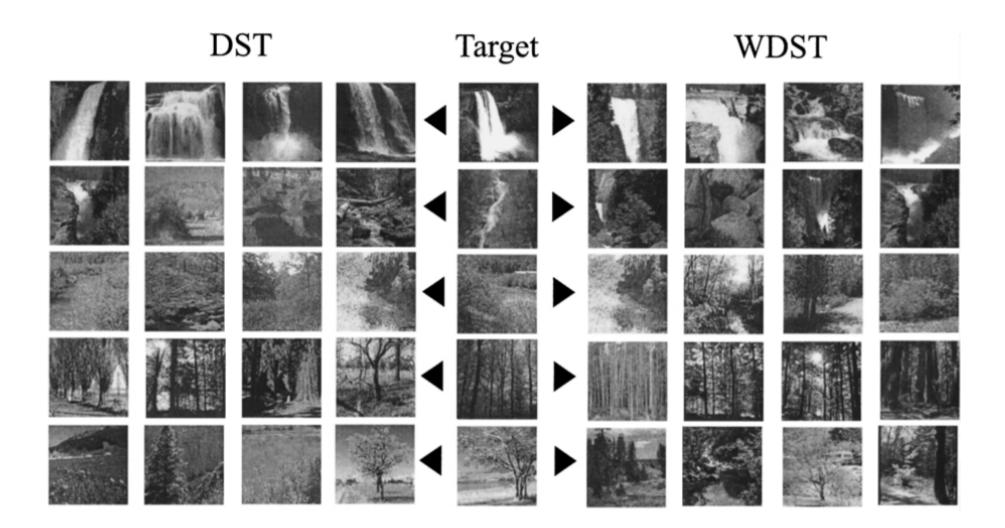

Example: Openness


Source: Oliva, et al. 2010

Nearest neighbors (man-made scene) – with DST and WDST

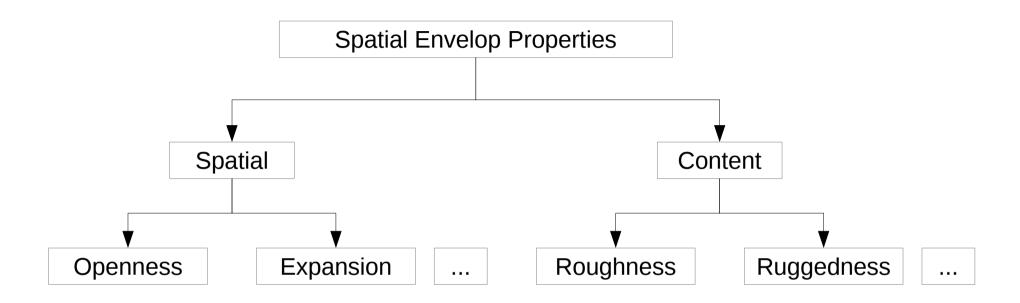

... WDST generally works better

Source: Oliva & Torralba, 2001


Organization of natural scenes in 2D (using WDST)

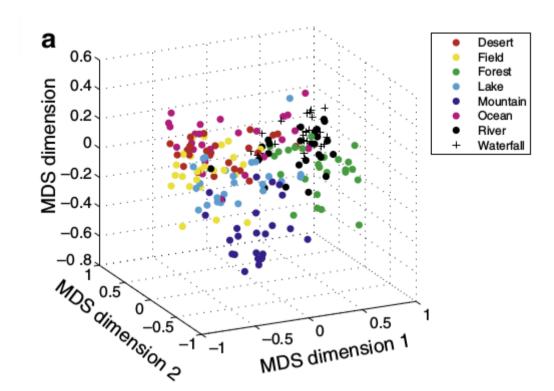
Source: Oliva & Torralba 2001

Organization of man-made scenes in 2D (using WDST)


Source: Oliva & Torralba 2001

Examples of natural scenes with four neighbors sharing similar spatial envelope, estimated with the DST and the WDST procedures.

Source: Oliva & Torralba, 2001


Summary: Spatial Envelop Representation

In this framework

Forest is a natural closed environment with a dense isotropic texture NOT an environment with trees, bushes and leaves

Semantics of a scene emerges from a multidimensional projection on Spatial Envelop axes

Target

Nearest neighbors

Source: Green & Oliva, 2009

Source: Oliva, et al. 2010

- Space centered approach as opposed to object centered approach
 - Space is treated as a material object
- Provides interesting and complementary descriptors for space
 - Quantitative measures relate to perceptual properties
- Isovist
 - describes the visible volumes of a three-dimensional space
- Spatial envelope
 - captures layout and content features from a two-dimensional projected view

Comparison between Isovists and Spatial Envelope representations

- Space centered approach as opposed to object centered approach
 - Space is treated as a material object
- Provides interesting and complementary descriptors for space
 - Quantitative measures relate to perceptual properties

<u>Isovist</u>

Describes the visible volumes of a three-dimensional space

Spatial envelope

Captures layout and content features from a twodimensional projected view

References

- Oliva, Park and Konkale.
 Representing, perceiving, and remembering the shape of visual space (Book Chapter), 2010 [overview]
- Benedict. To take hold of space ... 1979 [Isovist]
- Franz, et al. Exploring isovist-based correlates of spatial behavior and experience.
- Oliva and Torralba.
 Modeling the Shape of the Scene: ... Spatial Envelope, 2001 [Spatial Envelop Representation]