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Abstract. The identification of transition models of biological systems
(Petri net models, for example) in noisy environments has not been exam-
ined to any significant extent, although they have been used to model the
ideal behaviour of metabolic, signalling and genetic networks. Progress
has been made in identifying such models from sequences of qualitative
states of the system; and, more recently, with additional logical con-
straints as background knowledge. Both forms of model identification
assume the data are correct, which is often unrealistic since biological
systems are inherently stochastic. In this paper, we model the transition
noise that can affect model identification as a Markov process where the
corresponding transition functions are assumed to be known. We inves-
tigate, in the presence of this transition noise, the identification of tran-
sitions in a target model. The experiments are re-constructions of known
networks from simulated data with varying amounts of transition-noise
added. In each case, the target model traces a specific trajectory through
the state-space. Model structures that explain the noisy state-sequences
are obtained based on recent work which formulates the identification
of transition models as logical consequence-finding. With noisy data, we
need to extend this formulation by allowing the abduction of new tran-
sitions. The resulting structures may be both incorrect and incomplete
with respect to the target model. We quantify the ability to identify the
transitions in the target model, using probability estimates computed
from transition-sequences using PRISM. Empirical results suggest that
we are able to identify correctly the transitions in the target model with
transition noise levels ranging from low to high values.

1 Introduction

Chemical equations are symbolic statements not of what will happen, but of
what may happen. Thus, the equation 2H2(g) + O2(g) → 2H2O(g) does not
mean that hydrogen and oxygen will necessarily react to produce water (the “g”
denotes the reactants and products are in a gaseous state). Filling a balloon with
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the reactants, for example, does not immediately result in balloon full of water
vapour. Additional conditions may be needed (in this case, a high temperature)
for the reaction to occur. Even if external conditions are favourable, it is possible
that the reaction may not proceed. There is thus a non-determinism associated
with any chemical processes, including those that occur in cells [6].

Our interest in this paper is in computational models of biological networks,
like Petri nets, in which processes are transitions representing local changes to
the qualitative state of the system. An example of a Petri net representation of
the “water” reaction is in Fig. 1a.

(a) A simple Petri net. (b) A simple LGTS.

Fig. 1: Two transition system representations of the reaction 2H2 +O2 → 2H2O.

We extend our previous work to study identification of transition models of bio-
logical systems in the presence of added transition noise. We develop a two-stage
method (Fig. 2). First, deductive and abductive inference is used in a logic pro-
gramming framework [17] to identify all transitions consistent with observational
data. Second, probabilistic logic programming [15] is used to estimate parameters
for the identified transition system. Evaluation is by reconstruction experiments
on benchmark biological systems with varying levels of added transition noise.
In Section 2 we describe our approach. Empirical results and discussion are in
Section 3. We discuss some related work in Section 4, and conclude in Section 5.

2 Transition Identification under Transition Noise

Biochemical Background A theory of reactions based on collisions requires
not only that that the reactant molecules collide with each other, but that they
should collide in correct orientations. The reaction:

A−B + C → C −A + B

will only occur if C collides with the complex A−B on the “A-side”. The proba-
bility of such collisions can be mathematically modelled [8]. With small numbers
of A−B and C, this reaction may simply not occur. Such non-determinism can
be due to extrinsic and intrinsic effects, which has been studied in the chemical
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and biological literature [6]. In particular, sources of biological noise are both
intrinsic, due to the inherent stochasticity of processes of the system such as gene
expression, and extrinsic, due to conditions in the environment. In this paper we
focus on intrinsic noise.

Petri nets A Petri net [3] is a bipartite directed graph with two finite sets of
nodes, called places and transitions. Arcs are either from a place to a transition,
so the place is an input for the transition, or from a transition to a place, in which
case the place is an output of the transition. Transitions have a finite number
of input places and a finite number of output places. Places can be occupied
by zero or more tokens, and arcs can be labelled with an integer weight greater
than or equal to one. In a Petri net, a transition is enabled and can hence be
executed, or “fired”, when the number of tokens at each input place is equal to
or greater than the weight on the corresponding arc.

LGTS Transition systems [10] are a formalism used to model the behaviour
of dynamic systems. In this paper we adopt the framework of Logical Guarded
Transition Systems (LGTS) [16, 17], a generalisation of Petri nets [3] based on
logic programming. For example, Fig. 1b shows the “water” Petri net as an
LGTS, with the constraint that temperature should be high for the reaction
to proceed, which would be encoded as a logic program. Essentially, an LGTS
extends the Petri net formalism by allowing logical guarded transitions, speci-
fying the pre, post and invariant conditions that must hold for the transition
to occur. An LGTS for some system comprises a relation lgts from sequences of
observed system states to sequences of guarded transitions, plus definitions of
guarded transitions, and background knowledge encoding domain-specific and
generic constraints. In this paper we will assume that states are as in Petri nets,
i.e., vectors of place-values [3]. For transitions to be enabled and executed we
additionally require the guard of transitions to evaluate to TRUE. A guard of
a transition is defined in terms of the pre- and post-condition of the transition
and it’s invariant . The guard evaluates to TRUE if the pre- and post-condition
and the invariant are all TRUE. Petri nets (and their extended form, that al-
lows “read” and “inhibit” arcs, and variations like coloured and stochastic Petri
nets) can be seen as special cases of LGTS’s. LGTS’s can be used to simulate
system behaviour: given some initial state, output a sequence of transitions and
their corresponding states. LGTS’s can also be identified from samples of sys-
tem behaviour: given a sequence of states, determine a corresponding sequence
of transitions.

Transition identification The identification of LGTS’s can be formulated
as logical consequence finding [17]. The basic system identification task is as
follows:
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Given: (a) A sequence S of states, representing observations of the system
behaviour; and

(b) Background knowledge B containing generic and domain-specific
constraints and definitions of guarded transitions; and

(c) The definition of a relation G = lgts(S, T ) that is TRUE for all
pairs S and T s.t. T is an LGTS model of S.

Find: An acceptable LGTS. Any LGTS T satisfying B ∧G⇒ ∃T lgts(S, T )
is acceptable.

If B and G can be encoded as logic programs, then the T ’s can be computed
using the usual theorem prover used by logic programming systems. With a
bound on the number of tokens allowed in each place, the LGTS models for an
observation sequence S can be computed by a non-deterministic finite automa-
ton (NFA) [17]. The NFA is a transducer that reads zero or one input symbols
(observations) and writes out the corresponding transition.

Transition noise We can distinguish three kinds of “noise” that can affect
the identification of transition-based models from data: (a) signal noise (for
example, there is an error in the concentration of a metabolite); (b) state noise
(for example, a gene is incorrectly recorded as being “on” when it is actually
“off”); and (c) transition noise (for example, a reactant is not produced when
it normally should be). In principle, both (b) and (c) can be modelled by a
Markov process, if the corresponding transition functions were known, which is
the assumption made in this paper.

Specifically, we model transition noise as a probabilistic transition system. A
transition system [10] is a pair (S,→) where S is set of states and → is a binary
relation on S modelling the set of transitions. In a deterministic transition sys-
tem,→ is a function, i.e., for a given state s there is at most one successor state s′

such that s→ s′. In a non-deterministic transition system states may have more
than one successor state, i.e., →: S ×P(S). To model probabilistic transitions a
probability distribution is defined on each non-deterministic transition.
Identification in the presence of transition noise

Viewing an LGTS as an NFA is useful when considering identification from
noisy data. The presence of noise means that there is some mismatch between
transitions in background knowledge and the observations. This incompleteness
has two aspects: first, there may be some missing intermediate states; second,
states may have incorrect values with respect to the corresponding transitions.
The first problem is solved based on [4] by generating values for missing place
vectors during LGTS identification; in terms of NFA execution this is equivalent
to allowing the “empty” input ε to correspond to an output transition. The
second is solved by allowing the abduction of transitions for “noisy” state pairs;
this is akin to employing a theorem-prover that uses SOLD-resolution [18].

These identification steps for noisy observational data will typically lead to
an expanded set of transitions. To determine which transitions are more likely
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Fig. 2: System identification with noisy data.

to model the underlying system, and which are simply due to noise, the final
step in our approach is to sample repeatedly from the distribution over noisy
transitions and construct a probabilistic automaton. The resulting probabilities
can be used to rank output LGTS models for user inspection, and to evaluate
the method.

3 Empirical Evaluation

Our goal is to investigate the identification of the transitions comprising a sys-
tem, given noisy data sequences representing system behaviour. Specifically: we
intend to investigate if the transitions involved in generating the ideal sequence
of states can be identified given sufficient numbers of noisy data sequences.

3.1 Problems

The investigation considered system identification for the following problems,
listing in order of increasing model-size:

Fig. 3: Network model for the formation of water.

Water. The well-known school-level problem of the formation of water from hy-
drogen and oxygen forms the simplest system we will examine. The problem
clearly consists of a single reaction involving 3 kinds of molecules (places).
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Fig. 4: Network model of the MAPK cascade.

Fig. 5: Network model of the glycolysis pathway. The conversion of DHAP to
G3P is taken to be in one-direction only (the reverse is shown by a dashed line,
and not identified).
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MAPK. The MAPK pathway is a protein-based sequence of events that trans-
late a signal at the cell-surface to the nucleus. The pathway commences when
a protein or a hormone binds to a receptor protein that is usually bound to
the cell-membrane. This triggers a sequence of events that stops with the
DNA expressing one or more genes that alter cell function. At any one step
of the cascade, phosphor groups are attached to proteins. This phosphory-
lated form of the protein then forms a “switch” for commencing the next
step. MAPK is a central signalling pathway that is used in all cell-tissues
to communicate extra-cellular events to the cell nucleus. It is used to reg-
ulate a variety of responses, like hormone action, cell-cycle progression and
cell-differentiation. It is also of immense clinical value, since a defect in the
pathway often leads to uncontrolled growth. Proteins in the pathway are
thus natural targets for anti-cancer drugs.

Glycolysis. The glycolysis pathway was the first metabolic pathway to be dis-
covered. It is a classic case of a series of metabolic reactions in which products
of one reaction form the substrates (reactants) for the next reaction. The gly-
colysis pathway is comprised of 10 such reactions. The reactions breakdown
(metabolize) each molecule of glucose into two molecules of pyruvate. The se-
quence proceeds in three stages: primary (3 reactions), splitting (2 reactions)
and phosphorylation (5 reactions). Altogether, 15 metabolites are involved.
The pathway is one of the central metabolic pathways in living organisms:
it provides an essential part of the energy required for the functioning of a
cell, and is used in several metabolic processes.

We note that although Glycolysis contains more metabolites and reactions than
MAPK, the latter requires an extended Petri net [3] for its representation (it
requires “read” arcs), while Glycolysis (and Water) can be represented by normal
Petri nets.

3.2 Data

In this paper, data will be taken to be the result of one or more experiments,
each resulting in a table of the following form:

Places States

s0 s1 s2 . . . . . . sk

p1 s1,0 s1,1 s1,2 . . . . . . s1,k

p2 s2,0 s2,1 s2,2 . . . . . . s2,k

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

pl sl,0 sl,1 sl,2 . . . . . . sl,k

Places are, as noted above, as in the literature on Petri nets. In experiments
in this paper they are restricted to Boolean values (with 0 denoting that the
quantity represented by a place is absent, and 1 denoting that it is present in a
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sufficient quantity). Each table (experimental result) of this form gives rise to a
sequence (s0, s1, . . . , sn). A noisy data sequence will contain a sequence of states
that will differ from an ideal (noise-free) sequence of states.

System behaviours are thus sequences of system states of the form Si =
(si,0, si,1, . . . , si,ni

). Each such sequence can be taken as a set of state-pairs
{(si,0, si,1), (si,1, si,2), . . . , (si,ni−1, si,ni

)}; and a set of sequences S = {S1, S2, . . . , Sj}
can be represented by the union of the corresponding sets of state-pairs. We will
call this set StatePairs(S).

3.3 Models

An LGTS trace for a state-pair (si, sf ) is a set Trace(si, sf ) = {T1, T2, . . . , Tk},
where T1 = (t1, r1,m0,m1), T2 = (t2, r2,m1,m2), . . . , Tk = (tk, rk,mk−1,mk),
where: (a) each tj is a guarded transition; (b) rj = mj − mj−1; and (c)
si = m0; and (d) sf = mk. That is, m1,m2, . . .mk−1 are intermediate states.

An LGTS model for a state-pair (si, sf ) is T (si, sf ) = {(t, r) : (t, r,ma,mb) ∈
Trace(si, sf )}. It is straightforward to extend this to a set of sequences and
state-pairs. Given a set of sequences S = {S1, S2, . . . , Sj}, let TracePairs(S) =⋃

(si,sj)∈StatePairs(S) Trace(si, sj). Then LGTS (S) = {(t, r) : (t, r,ma,mb) ∈
TracePairs(S)}.

It is possible to construct a non-deterministic finite-state automaton (NFA)
from TracePairs(S) that can output all the sequences in S. Further, a probabilis-
tic finite-state automaton (PFA) can be constructed from the NFA by extending
the transition function to include a probability distribution. We omit proofs of
these claims here, and show some example automata instead (see Fig. 8 and
Fig. 9).

3.4 Algorithms and Machines

Simulated data and probability estimates of the sequences of transitions are
obtained using the probabilistic environment provided within the PRISM sys-
tem [15]. LGTS models are obtained using a Prolog program that implements
the basic system identification task in Section 2. All programs were run on a
Lenovo dual processor Core i7 laptop, running a Linux emulation with 4 GB of
memory.

3.5 Method

Our method is straightforward:

1. Repeat R times:
For low, medium and high noise levels:

i. Generate N noisy data sequences, using probabilistic versions of
transitions in the ideal model

ii. Obtain LGTS proofs for each (noisy) data sequence
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iii. Using the transition sequences in the LGTS proofs, determine the
extent to which the correct transitions can be identified. This may in-
volve an abduction step, somewhat related to SOLD-resolution [18].

The following details are relevant:

1. Low, medium and high levels of noise are defined in terms of the proba-
bility with which a probabilistic transition generates the output-state of the
corresponding deterministic transition. Here, low noise means that this prob-
ability is 90%; medium noise means that the probability is 75%; and high
noise means that the probability is 50%.

2. In this paper, R = 10. We generate N = 100 noisy data sequences for each
model. The data are generated using a Hidden Markov (HMM) model, in
which states are observed and transitions are hidden.4 Mainly, two kinds of
probabilities have to be specified for the HMM: the conditional probability
of emitting a (biological system) state, given a (biological system) transi-
tion; and the conditional probability of a transition, given a transition. One
additional probability distribution is needed that allows an initial transition
to be selected randomly. With each deterministic transition in the model t
with input state si and output state sj we associate a probabilistic variant
with input si and a set Sj as output, with sj ∈ Sj . The probability with
which the HMM emits elements of Sj is determined by the noise level (thus,
with low noise, the probability that sj is emitted is 0.9 and so on). Here,
the set Sj consists of sj and all states within a 1-bit Hamming distance of
sj . The transitions that can follow t with output state sj are all transitions
that have sj as an input state. The HMM selects amongst these uniformly.
This simulation is done using the PRISM program.

3. The efficacy of transition identification is computed as follows. Let the target
model of the system consist of a set of transitions Tact. Let the system model
consist of the set of transitions Tpred. We only seek Viterbi probabilities of
such sequences of length |Tact| (this is provided as a length-bound on the
sequences considered by PRISM). The NFA has no loops, and thus |Tpred|
= |Tact|. For each experimental run, we compute E = |Tact − Tpred|/|Tact|,
which is, in effect a false-negative rate. Since the sets Tact and Tpred are of
the same size, the false-positive rate is equal to the false-negative rate. E = 0
denotes perfect identification and E = 1 denotes perfect mis-identification.

3.6 Results

Table 1 shows some supplementary details related to the transition-identification
problem.

Some of the success see in the results of Table 3 may be attributed to the
amount of data provided: the results in Table 3 are from 100 (simulated) se-
quences of observed values. In practice, each such sequence can be thought of as

4 This may be slightly confusing in the first instance, since in HMMs, states are hidden.
Here we are referring to biological system states and biological system transitions.
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Noise Water MAPK Glycolysis

|T | |T ∗| |T | |T ∗| |T | |T ∗|
Low 16 (1) 2 (0) 101 (12) 6 (0) 255 (48) 11 (0)

Med 19 (2) 2 (0) 160 (8) 6 (0) 425 (23) 11 (0)

High 22 (1) 2 (0) 245 (10) 6 (0) 625 (75) 11 (0)

Table 1: Number of transitions (T ) in the logical LGTS model and the number
of transitions (T ∗) identified using the probabilistic model (the latter includes an
initial dummy transition). The quantities in parentheses are the standard devi-
ations obtained from multiple repeats of the identification task. All numbers are
rounded up to the nearest integer, since fractional transitions are meaningless.

Noise Error E)

Water MAPK Glyc.

Low 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Med 0.00 (0.00) 0.03 (0.10) 0.20 (0.10)

High 0.55 (0.35) 0.88 (0.20) 0.88 (0.10)

Table 2: Identification of transitions with small datasets. Here 10 observation
sequences are used to identify the transitions.

an experiment; and 100 experiments is unusual in Biology, unless dealing with
some form of high-throughput automation like microarray data generation. Ta-
ble 2 shows the results obtained with significantly fewer observation sequences
(10, instead of 100). Now, identification becomes more difficult at moderate
noise-levels.

These results suggest that when small amounts of data are the norm, we
can expect probabilistic transition-identification to work best at low levels of
transition-noise. While this is perhaps obvious enough, a caveat is nevertheless
worth noting. A good case can be made that noise-levels that we have labelled
here as “medium” and “high” are unlikely to be encountered in practice (for
example, a chemical reaction is very unlikely to result in unexpected products
50% of the time). We would therefore expect the transition-identification ap-
proach proposed here to work well in practice, even if the data instances are few
in number.

Results related to identifying transitions in the target models are in Table 3.
The results show clearly that identification of the set of target transitions is per-
fect at low and medium noise-levels, and only degrades when transition noise is
high. It is also apparent that performance is degraded by higher levels of noise,
evident from the decrease in Viterbi probability. It is surprising that identifi-
cation performance is so good, because although the target models studied are
relatively simple, with Water, MAPK and Glycolysis having 1, 5 and 10 tran-
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Noise Error E Probability P

Water MAPK Glyc. Water MAPK Glyc.

Low 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.81 (0.05) 0.55 (0.03) 0.31 (0.04)

Med 0.00 (0.00) 0.00 (0.0) 0.00 (0.00) 0.55 (0.05) 0.17 (0.04) 0.04 (0.01)

High 0.00 (0.00) 0.20 (0.00) 0.90 (0.10) 0.23 (0.04) 0.01 (0.00) 0.01 (0.00)

Table 3: Identification of transitions in the target model. E denotes the average
false-negative rate (that is, the fraction of true transitions not identified). Both
the predicted and actual transition sequences are of the same length (see text for
details), so the false-negative and false-positive rates are the same. Thus a value
of 0.0 for E denotes all–and only–the transitions in the model are identified;
and a value of 1.0 denotes none of the transitions in the model are identified.
The column P denotes the average Viterbi probability of the highest ranking
transition sequence (transitions in this sequence are predicted as being in the
target model). Noise levels of low, medium, and high refers to transitions having a
probability of 10%, 25% and 50% of resulting in an incorrect state. The quantities
in parentheses are the standard deviations obtained from multiple repeats of the
identification task.

sitions with 3, 9 and 15 places, respectively, the hypothesis space of possible
transitions is quite large in each case.

3.7 Transition identification worked example: water

Shown in Figs. 6–9 are examples of the main stages in our approach for the
“Water” transition system. In Fig. 6 we see three sample observational state
sequences. These are value vectors for the named places over the sequence. In
Fig. 7 we show inferred transitions in LGTS trace pairs for these sequences, com-
prising the transition name, difference (reaction) vector, and the corresponding
predecessor and successor states for these transitions. Figs. 8 and 9 show the
constructed NFA and PFA, respectively, for this system.

The transitions in the highest ranked transition sequence from the PFA
(ranked by Viterbi probability obtained using PRISM built-in predicates) are
used to identify the system transitions. In Fig. 9, the highest ranked sequence is
(t1, t2), and the system model is taken to be {(t1, r1), (t2, r2) : (t1, r1), (t2, r2) ∈
LGTS (S)}. Note that this will usually be a subset of LGTS(S) and in some
sense, can be considered a generalisation of that set.

4 Related Work

There have been several approaches to the identification of Petri nets from data.
For example, in the area of business process mining (BPM) [1] a number of meth-
ods construct Petri nets. An important problem in BPM is process discovery, i.e.,
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Data S :

([(h2, 0), (o2, 0), (h2o, 0)], [(h2, 1), (o2, 1), (h2o, 0)], [(h2, 0), (o2, 0), (h2o, 1)])

([(h2, 0), (o2, 0), (h2o, 0)], [(h2, 1), (o2, 1), (h2o, 0)], [(h2, 0), (o2, 0), (h2o, 1)])

([(h2, 0), (o2, 0), (h2o, 0)], [(h2, 1), (o2, 1), (h2o, 0)], [(h2, 1), (o2, 0), (h2o, 1)])

. . .

. . .

Fig. 6: Transition identification worked example: Noisy data sequences simulating
formation of water from hydrogen and oxygen; states shown as place-value tuples.

Transition TracePairs(S):

(t1, [(h2, 1), (o2, 1), (h2o, 0)], [(h2, 0), (o2, 0), (h2o, 0)], [(h2, 1), (o2, 1), (h2o, 0)])

(t2, [(h2,−1), (o2,−1), (h2o, 1)], [(h2, 1), (o2, 1), (h2o, 0)], [(h2, 0), (o2, 0), (h2o, 1)])

. . .

. . .

Fig. 7: Transition identification worked example: LGTS trace for data of Fig. 6.

given a log of activity sequences from some software system, generate a model of
the business processes involved. This model is often a Petri net, generated, for
example, by first extracting a transition system from the activity log and then
synthesising a Petri net from it [11]. Although this method is well-founded with
theoretical guarantees [5] it has exponential worst-case time complexity and in
practice it can lead to both under- and overfitting, so most implementations use
additional heuristics [1]. Nonetheless, it has a natural declarative formulation [11]
so could provide a basis for further work in ILP.

Another problem in BPM is that of conformance checking, which has been
investigated in ILP [12] by supervised learning of integrity constraints to detect
non-compliance in activity logs. This was extended to a probabilistic framework
using Markov logic and shown to increase accuracy and efficiency [2]. However,
these approaches require the use of negative example traces, which are typically
not available in biological settings. In [7] an unsupervised ILP approach to BPM
was used, but did not use a formalised probabilistic model. In one sense the above
BPM tasks are easier than the standard biological setting, since log files typically
contain many repeated instances of activity sequences, thus providing enough
data to disambiguate Petri net models. In biological settings this is usually not
the case due to the difficulty of running many repeated biological experiments.

One heuristic approach often adopted in BPM has been genetic algorithms,
and a number of authors working on Petri net identification in biology have also
investigated such methods. In [14] grammatical evolution was used, where the
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Fig. 8: Transition identification worked example: Non-deterministic finite-state
automaton obtained from LGTS trace that correctly derives all data. Transition-
identifiers in italics are result of abduction steps made by the theorem-prover to
obtain the LGTS trace. Sx/Sy denotes input/ output symbols of transition. All
states are connected to “halt” state” — most omitted for clarity.

Fig. 9: Transition identification worked example: Probabilistic finite-state au-
tomaton obtained from the NFA in (c). Probabilities are estimated using tran-
sition sequences followed by the NFA when emitting data sequences as output.
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hypothesis space of Petri net models for genetic interactions related to disease
was specified using a context-free grammar, and in [13] the incidence matrix
was evolved directly. However, these approaches were only reported to work on
networks of up to four genes. Furthermore, the above methods cannot identify
extended Petri nets, which contain read and inhibitory arcs [17].

The work of [4] appears to be the first method to reconstruct extended Petri
nets from time series data. In contrast to our work this approach does not enable
constraints on individual transitions. Although there is a form of abduction in
this approach, it does not allow for inductive steps in identification, as in [16,
17], or probabilistic identification, as in this paper. Learning from interpreta-
tion transitions was presented in [9] where an ILP-based approach is used to
identify Boolean network models. However, this does not identify probabilistic
transitions.

5 Conclusion

We have studied the identification of transition models of biological systems
under conditions of added transition noise, extending our previous work. Using
the probabilistic logic programming system PRISM [15] we have modelled vary-
ing levels of transition noise in three benchmark biological systems. We apply a
two-step method, first using a logic-programming approach incorporating both
deduction and abduction to identify a complete set of logical guarded transitions
that explain the noisy state-sequences. This logical model is then used to con-
struct a probabilistic finite-state automaton. The parameter-estimates obtained
(using PRISM) for this automaton are used to identify a subset of the logi-
cal model that is then taken to be the system model. Our experimental results
show that the method can reconstruct known networks from simulated data with
varying amounts of transition-noise.

There are some immediate ways in which the empirical evaluation could be
extended. First, we have presented some evidence that as data size decreases,
system identification is affected at high noise levels. However, “smaller” data
sizes here is still much higher than what is normally available in experimental
life-sciences. For example, how will system identification be affected when data
are available from 2 to 3 experiments? Secondly, we have seen that larger sized
networks are affected more by high noise-levels than networks of smaller size.
Although the high noise-levels used here are unlikely to be encountered in real
data, there is nevertheless a need for further work to investigate the effect of
network size. It is possible that, even at low noise levels, system identification
may degrade for very large networks. Third, although we have examined the
effect of incorrect data, we have not examined the effect of incomplete data.
The probabilistic setting we have used naturally accounts for this by the use
of the EM algorithm to estimate probabilities. We should therefore be able to
investigate the effect of missing data on system identification.
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