
Letters

Learning a hyperplane classifier by minimizing an exact bound
on the VC dimension1

Jayadeva
Department of Electrical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India

a r t i c l e i n f o

Article history:
Received 25 January 2014
Received in revised form
14 July 2014
Accepted 29 July 2014
Communicated by R.W. Newcomb
Available online 12 August 2014

Keywords:
Machine learning
Support vector machines
VC dimension
Complexity
Generalization
Sparse

a b s t r a c t

The VC dimension measures the complexity of a learning machine, and a low VC dimension leads to
good generalization. While SVMs produce state-of-the-art learning performance, it is well known that
the VC dimension of a SVM can be unbounded; despite good results in practice, there is no guarantee of
good generalization. In this paper, we show how to learn a hyperplane classifier by minimizing an exact,
or Θ bound on its VC dimension. The proposed approach, termed as the Minimal Complexity Machine
(MCM), involves solving a simple linear programming problem. Experimental results show, that on a
number of benchmark datasets, the proposed approach learns classifiers with error rates much less than
conventional SVMs, while often using fewer support vectors. On many benchmark datasets, the number
of support vectors is less than one-tenth the number used by SVMs, indicating that the MCM does
indeed learn simpler representations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines are amongst the most widely used
machine learning techniques today. The classical SVM [1] has
evolved into a multitude of diverse formulations with different
properties. The most commonly used variants are the maximum
margin L1 norm SVM [1], and the least squares SVM (LSSVM) [2],
both of which require the solution of a quadratic programming
problem. In the last few years, SVMs have been applied to a
number of applications to obtain cutting edge performance; novel
uses have also been devised, where their utility has been amply
demonstrated [3–24]. SVMs were motivated by the celebrated
work of Vapnik and his colleagues on generalization, and the
complexity of learning. It is well known that the capacity of a
learning machine can be measured by its Vapnik–Chervonenkis
(VC) dimension. The VC dimension can be used to estimate a
probabilistic upper bound on the test set error of a classifier. A
small VC dimension leads to good generalization and low error
rates on test data.

In his widely read tutorial, Burges [25] states that SVMs can
have a very large VC dimension, and that “at present there exists no
theory which shows that good generalization performance is guar-
anteed for SVMs”. This paper shows how to learn a classifier with
large margin, by minimizing an exact (Θ) bound on the VC

dimension. In other words, the proposed objective linearly bounds
the VC dimension from both above and below. We show that this
leads to a simple linear programming problem. This approach is
generic, and it suggests numerous variants that can be derived
from it – as has been done for SVMs. Experimental results
provided in the sequel show that the proposed Minimal Complex-
ity Machine outperforms conventional SVMs in terms of test set
accuracy, while often using far fewer support vectors. That the
approach minimizes the machine capacity may be gauged from
the fact that on many datasets, the MCM yields better test set
accuracy while using less than 1=10�th the number of support
vectors obtained by SVMs.

The motivation for the MCM originates from some sterling
work on generalization [26–29]. We restrict our attention in this
paper to a given binary classification dataset for which a hyper-
plane classifier needs to be learnt. Consider such a binary classi-
fication problem with data points xi; i¼ 1;2;…;M, and where
samples of class þ1 and �1 are associated with labels yi¼1 and
yi ¼ �1, respectively. We assume that the dimension of the input
samples is n, i.e. xi ¼ ðxi1; xi2;…; xinÞT . For the set of all gap tolerant
hyperplane classifiers with margin dZdmin, Vapnik [28] showed
that the VC dimension γ is bounded by

γr1þmin
R2

d2min

;n

 !
ð1Þ

where R denotes the radius of the smallest sphere enclosing all the
training samples. Burges, in [25], stated that “the above arguments
strongly suggest that algorithms that minimize R2=d2 can be expected

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.07.062
0925-2312/& 2014 Elsevier B.V. All rights reserved.

E-mail address: jayadeva@ee.iitd.ac.in
URLS: http://www.jayadeva.net, http://ee.iitd.ernet.in/people/jayadeva.html
1 For commercial use of the MCM and its variants, please contact FITT, IIT Delhi.

Neurocomputing 149 (2015) 683–689

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.07.062
http://dx.doi.org/10.1016/j.neucom.2014.07.062
http://dx.doi.org/10.1016/j.neucom.2014.07.062
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.07.062&domain=pdf
mailto:jayadeva@ee.iitd.ac.in
http://www.jayadeva.net
http://ee.iitd.ernet.in/people/jayadeva.html
http://dx.doi.org/10.1016/j.neucom.2014.07.062


to give better generalization performance. Further evidence for this is
found in the following theorem of (Vapnik, 1998), which we quote
without proof”. We follow this line of argument and show, through
a constructive result, that this is indeed the case.

The remainder of this paper is organized as follows. Section 2
outlines the proposed optimization problem for a linear hyper-
plane classifier in the input space. Section 3 discusses the exten-
sion of the Minimum Complexity Machine to the kernel case.
Section 4 is devoted to a discussion of results obtained on selected
benchmark datasets. Section 5 contains concluding remarks. In
Appendix A, we derive an exact bound for the VC dimension of a
hyperplane classifier. Appendix B deals with the formulation of the
hard margin MCM.

2. The Linear Minimal Complexity Machine

We first consider the case of a linearly separable dataset. By
definition, there exists a hyperplane that can classify these points
with zero error. Let the separating hyperplane be given by

uTxþv¼ 0: ð2Þ
Let us denote

h¼maxi ¼ 1;2;…;M JuTxiþvJ
mini ¼ 1;2;…;M JuTxiþvJ

: ð3Þ

In Appendix A, we show that h may also be written as

h¼maxi ¼ 1;2;…;M yiðuTxiþvÞ
mini ¼ 1;2;…;M yiðuTxiþvÞ ; ð4Þ

and we show that there exist constants α; β40, α; βAR such that

αh2rγrβh2; ð5Þ
or, in other words, h2 constitutes a tight or exact (θ) bound on the
VC dimension γ. An exact bound implies that h2 and γ are close to
each other.

Therefore, the machine capacity can be minimized by keeping
h2 as small as possible. Since the square function ð�Þ2 is mono-
tonically increasing, we can minimize h instead of h2. We now
formulate an optimization problem that tries to find the classifier
with smallest machine capacity that classifies all training points of
the linearly separable dataset correctly; this problem is given by

minimize
u;v

h¼maxi ¼ 1;2;…;M yiðuTxiþvÞ
mini ¼ 1;2;…;M yiðuTxiþvÞ ð6Þ

Note that in deriving the exact bound in Appendix A, we
assumed that the separating hyperplane uTxþv¼ 0 correctly
separates the linearly separable training points; consequently, no
other constraints are present in the optimization problem (6).

In Appendix B, we show that the optimization problem (6) may
be reduced to the problem

min
w;b;h

h ð7Þ

hZyi � ½wTxiþb�; i¼ 1;2;…;M ð8Þ

yi � ½wTxiþb�Z1; i¼ 1;2;…;M; ð9Þ
where wARn, and b;hAR. We refer to the problem (7)–(9) as the
hard margin Linear Minimum Complexity Machine (Linear MCM).

Note that the variable h in (7) and that in (5) refer to the same
functional. By minimizing h in (7), we are minimizing an exact
bound on γ, the VC dimension of the classifier. Once w and b have
been determined by solving (7)–(9), the class of a test sample x
may be determined from the sign of the discriminant function

f ðxÞ ¼wTxþb ð10Þ

In general, datasets will not be linearly separable. The soft
margin equivalent of the MCM is obtained by introducing addi-
tional slack variables, and is given by

min
w;b;h

hþC � ∑
M

i ¼ 1
qi ð11Þ

hZyi � ½wTxiþb�þqi; i¼ 1;2;…;M ð12Þ

yi � ½wTxiþb�þqiZ1; i¼ 1;2;…;M ð13Þ

qiZ0; i¼ 1;2;…;M: ð14Þ
Here, the choice of C allows a tradeoff between the complexity
(machine capacity) of the classifier and the classification error.

Once w and b have been determined, the class of a test sample
x may be determined as before by using the sign of f (x) in (10). In
the sequel, we show how to extend the idea to nonlinearly
separable datasets.

3. The kernel MCM

We consider a map ϕðxÞ that maps the input samples from Rn

to Rl, where l4n. The separating hyperplane in the image space is
given by

uTϕðxÞþv¼ 0: ð15Þ
Following (11)–(13), the corresponding optimization problem

for the kernel MCM may be shown to be

min
w;b;h;q

hþC � ∑
M

i ¼ 1
qi ð16Þ

hZyi � ½wTϕðxiÞþb�þqi; i¼ 1;2;…;M ð17Þ

yi � ½wTϕðxiÞþb�þqiZ1; i¼ 1;2;…;M ð18Þ

qiZ0; i¼ 1;2;…;M: ð19Þ
The image vectors ϕðxiÞ; i¼ 1;2;…;M form an overcomplete

basis in the empirical feature space, in which w also lies. Hence,
we can write

w¼ ∑
M

j ¼ 1
λjϕðxjÞ: ð20Þ

Therefore,

wTϕðxiÞþb¼ ∑
M

j ¼ 1
λjϕðxjÞTϕðxiÞþb¼ ∑

M

j ¼ 1
λjKðxi; xjÞþb; ð21Þ

where Kðp; qÞ denotes the Kernel function with input vectors p and
q, and is defined as

Kðp; qÞ ¼ ϕðpÞTϕðqÞ: ð22Þ
Substituting (21) into (16)–(18), we obtain the following

optimization problem:

min
w;b;h;q

hþC � ∑
M

i ¼ 1
qi ð23Þ

hZyi � ∑
M

j ¼ 1
λjKðxi; xjÞþb

" #
þqi; i¼ 1;2;…;M ð24Þ

yi � ∑
M

j ¼ 1
λjKðxi; xjÞþb

" #
þqiZ1; i¼ 1;2;…;M ð25Þ

qiZ0; i¼ 1;2;…;M: ð26Þ

Jayadeva / Neurocomputing 149 (2015) 683–689684



Once the variables λj; j¼ 1;2;…;M, and b are obtained, the class
of a test point x can be determined by evaluating the sign of

f ðxÞ ¼wTϕðxÞþb¼ ∑
M

j ¼ 1
λjKðx; xjÞþb: ð27Þ

Note that in (20), the ϕðxjÞ's for which the corresponding λj's are
non-zero constitute the support of the vector w. Hence, ϕðxjÞ's for
which the λj's are non-zero may be termed as support vectors. The
maximum number of support vectors is the number of training
samples M, as in the case of the SVM.

4. Experimental results

The MCM was coded in MATLAB [30]. Fig. 1 provides a
flowchart illustrating the MCM implementation; as may be seen,
we use the linprog function in MATLAB to solve the optimization
problem comprising the MCM.

In order to compare the MCM with SVMs, we chose a number of
benchmark datasets from the UCI machine learning repository [31].
Table 1 summarizes information about the number of samples and
features of each dataset. Some of the benchmark datasets are multi-
class ones. These have been learnt by adopting a one-versus-rest
approach. Accuracies, CPU times, and the number of support vectors
have been averaged across all the classifiers learnt in a one-versus-rest
approach.

Table 2 summarizes five fold cross validation results of the
linear MCM on the datasets listed in Table 1. Accuracies are
indicated as mean7standard deviation, computed over the five
folds. The table compares the linear MCM with the SVM using a
linear kernel. Note that the MCM solves the primal problem and
not the dual. The linear SVM is solved using the dual, by using a
linear kernel. This is done because the SVM primal is numerically

less attractive owing to the ill conditioning of the Hessian. Hence,
there is a subtle difference between a linear MCM and a SVM
(linear kernel). The values of C were determined for the MCM by
performing a grid search; tuning C carefully is important for the
MCM. The table also provides a comparison between the CPU
times taken by the SVM and the MCM. For the implementation of
the SVM, we use a small MATLAB code that solves the quadratic
programming dual form of the classical L1 norm SVM by calling the
quadprog command in MATLAB. This has been done to enable a
comparison of the CPU times taken by the MCM and the SVM.
Faster implementations based on the active set methods are
possible for the MCM; such methods exist for the SVM and include
Platt's SMO [32] and the 1SMO algorithm [33].

Table 3 summarizes five fold cross validation results of the
kernel MCM on a number of datasets. A Gaussian or Radial Basis
Function (RBF) kernel was chosen for both the MCM and the SVM.
The width of the MCM Gaussian kernel and the value of C were
chosen by using a grid search.

The table shows test set accuracies and the number of support
vectors for both the kernel MCM, and the classical SVM with a
Gaussian kernel. The results indicate that the kernel MCM yields
better generalization than the SVM. In the case of kernel classifica-
tion, the MCM uses fewer support vectors, generally about one-
third the number used by SVMs. In the case of many of the
datasets, the MCM uses less than one-tenth the number of support
vectors required by a SVM. The code for the MCM classifier would
be available from the author's website. The large difference with
the SVM results indicates that despite good performance, SVM
solutions may still be far from optimal. Vapnik [1] showed that

EðPerrorÞrEð#support vectorsÞ
#training samples

; ð28Þ

where EðPerrorÞ denotes the expected error on test samples taken from
the general distribution, #training samples denotes the number of
training samples, and E(# support vectors) denotes the expected
number of support vectors obtained on training sets of the same size.
Although the bound was shown for linearly separable datasets, it does
indicate that the number of support vectors is also related to the
prediction error. An examination of the table indicates that theFig. 1. Illustration of the MATLAB flowchart for the MCM code.

Table 1
Characteristics of the benchmark datasets used.

Dataset Size (samples� features� classes)

Blogger 100�6�2
Fertility diagnosis 100�9�2
Promoters 106�57�2
Echocardiogram 132�12�2
Teaching assistant 151�5�3
Hepatitis 155�19�2
Hayes 160�5�3
Plrx 182�12�2
Seed 210�7�3
Glass 214�10�6
Heartstatlog 270�13�2
Horsecolic 300�27�2
Haberman 306�3�2
Ecoli 336�8�3
House voters 435�16�2
Wholesale customer 440�8�2
IPLD 583�10�2
Balance 625�4�3
Australian 690�14�2
Crx 690�15�2
Transfusion 748�5�2
Tic tac toe 958�9�2
Sorlie 85�456�2
Secom 1567�591�2
Tian 173�12626�2

Jayadeva / Neurocomputing 149 (2015) 683–689 685



proposed approach shows a lower test set error, and also uses a
smaller number of support vectors.

Table 4 shows the values of h for the linear MCM and the kernel
MCM on the benchmark datasets. The values have been indicated as
mean7standard deviation, computed over the five folds in a five-

fold cross validation setting. Note that h2 is an exact bound on the VC
dimension γ, and thus an approximate measure of the capacity of the
learning machine. The table indicates that the values of h for the
kernel MCM are generally smaller than that for the linear MCM. This
also reflects the better generalization achieved by the kernel MCM.

Table 2
Linear MCM results.

Datasets Linear MCM Linear SVM

Accuracy Time (s) Accuracy Time (s)

Blogger 69.00717.15 0.001276.64e�5 58.00720.40 6.1772.51
Fertility diagnosis 88.0079.27 0.001375.27e�5 86.0079.01 8.1271.47
Promoters 74.08710.88 0.001474.53e�5 67.78710.97 0.8570.03
Echocardiogram 90.8875.75 0.001474.62e�5 86.3874.50 0.7270.36
Teaching assistant 66.2776.77 0.001373.46e�5 64.9476.56 16.0774.17
Hepatitis 68.3876.26 0.001473.82e�5 60.6477.19 1.9070.56
Hayes 76.3279.25 0.001272.73e�5 73.5677.73 7.1973.81
Plrx 71.8377.49 0.001573.37e�5 71.4277.37 4.3570.78
Seed 97.6171.51 0.001573.97e�5 90.9574.09 12.3774.51
Glass 99.0671.16 0.004275.56e�3 98.1271.75 11.8373.44
Heartstatlog 84.8173.87 0.001871.47e�5 82.5972.22 9.4374.25
Horsecolic 81.0074.03 0.002177.17e�5 80.2674.63 41.39713.93
Haberman 73.8973.71 0.001974.34e�5 72.5673.73 13.7476.63
Ecoli 96.7371.96 0.002371.3e�4 96.7371.96 18.4172.57
House voters 95.6371.84 0.003171.87e�4 94.4872.46 15.7772.19
Wholesale customer 92.2671.97 0.003371.07e4 91.1371.95 32.1178.29
IPLD 71.3572.93 0.006574e�5 71.3572.93 12.3078.26
Balance 95.2671.02 0.007771.3e�3 95.2071.01 8.3771.03
Australian 85.7372.04 0.007679.75e�5 84.4971.18 407.977167.73
Crx 69.5672.79 0.009571.36e�3 67.7973.47 498.04735.22
Transfusion 78.1973.25 0.008278.21e�4 77.1372.26 173.06744.12
Tic tac toe 74.2275.50 0.03874.9e�2 73.9176.11 24.1376.81
Sorliea 94.08471.54 0.16570.15 90.1972.47 187.5071.37
Secoma 87.8771.88 957.00787.29 86.0470.82 6359.78715.93
Tiana 81.7171.43 1.3970.67 80.9271.39 7832.7676.31

a Marked datasets were run on shared computing platforms, and compute times may not be representative.

Table 3
Kernel MCM results.

Datasets Kernel MCM Kernel SVM

Accuracy CPU time (s) #SV Accuracy CPU time (s) #SV

Blogger 88.0074.00 0.3270.03 22.2075.91 81.00710.20 2573749.2 51.2073.06
Fertility diagnosis 89.0072.00 0.1870.09 9.80719.60 88.0079.27 8.0371.95 38.2071.60
Promoters 84.9371.56 0.4570.39 82.4072.73 75.5977.63 4.4071.33 83.8070.98
Echocardiogram 89.3474.57 0.3170.01 12.0070.00 87.1477.27 8.5871.91 48.0072.10
Teaching assistant 74.8372.60 0.3970.13 26.60732.43 68.8876.48 41927162 86.0073.22
Hepatitis 85.8078.31 0.4470.02 20.0070.00 82.5776.32 356174392 72.2074.31
Hayes 81.8277.28 0.3170.05 3.2371.11 79.5776.60 1427754.7 84.2072.04
Plrx 71.9975.81 0.4170.10 4.4078.80 71.4176.04 144.2175816 116.276.14
Seed 97.1370.95 0.7970.01 11.2075.71 91.9072.86 3362785.1 51.8071.72
Glass 96.2372.77 1.6970.50 36.00711.49 90.6475.09 20 4757832 64.8072.40
Heartstatlog 84.4473.21 1.3270.76 1072.23 83.771.54 15477324.52 124.674.15
Horsecolic 82.3374.03 3.8472.31 36.60717.70 81.3374.14 13 26772646 187.273.27
Haberman 73.4973.85 1.2370.32 8.5077.00 72.8173.51 20877750 138.273.27
Ecoli 97.3271.73 3.4770.30 24.0071.41 96.4272.92 11 8297248 57.0074.65
House voters 95.8771.16 4.2470.83 17.8078.91 95.4272.04 88277349 93.6073.93
Wholesale customer 92.7271.54 7.3170.93 39.00710.64 90.9071.90 92437362 123.4072.15
IPLD 72.0373.20 4.0675.02 23.40730.50 70.1572.24 97437322 311.6075.31
Balance 97.6471.32 8.7871.32 14.6070.49 97.6070.51 15 4427651 143.0074.23
Australian 85.6572.77 103.45718.04 108.8071.60 84.3173.01 94 20774476 244.874.64
Crx 69.5672.90 5.9572.55 3.4076.80 69.2772.62 19 32775841 404.478.69
Transfusion 77.0072.84 7.0870.69 6.0073.52 76.7372.88 18 25471531 302.2077.55
Tic tac toe 98.3270.89 12.5570.56 10.0070.00 93.9472.10 18 6747973 482.6073.93
Sorliea 98.8272.35 0.4470.15 5074.77 97.64472.88 78.6379.81 68.9573.72
Secoma 94.1172.23 1521775.5 382.8744.23 92.2970.82 38 769.2578.87 593.2717.22
Tiana 97.0973.83 2.0570.199 70.473.26 95.18874.26 88.9773.26 75.671.01

a Marked datasets were run on shared computing platforms, and compute times may not be representative.

Jayadeva / Neurocomputing 149 (2015) 683–689686



5. Conclusion

In this paper, we propose a way to build a hyperplane classifier,
termed as the Minimal Complexity Machine (MCM), that attempts
to minimize a bound on the VC dimension. The classifier can be
found by solving a linear programming problem. Experimental
results show that the learnt classifier outperforms the classical
SVM in terms of generalization accuracies on a number of selected
benchmark datasets. At the same time, the number of support
vectors is less, often by a substantial factor. It has not escaped our
attention that the proposed approach can be extended to least
squares classifiers, as well as to tasks such as regression; in fact, a
large number of variants of SVMs can be re-examined with the
objective of minimizing the VC dimension.

Acknowledgment

The author would like to thank Prof. Suresh Chandra of the
Department of Mathematics, IIT Delhi, for his valuable comments
and a critical appraisal of the manuscript. The extensive simula-
tions were the result of the untiring efforts of Siddarth Sabharwal
and Sanjit Singh Batra. Early simulations on the linear model were
done by Prasoon Goel.

Appendix A. An exact bound on the VC dimension γ

We derive an exact or tight (Y) bound on the VC dimension γ.
Vapnik [28] showed that the VC dimension γ for fat margin
hyperplane classifiers with margin dZdmin satisfies

γr1þmin
R2

d2min

;n

 !
ðA:1Þ

where R denotes the radius of the smallest sphere enclosing all the
training samples. We first consider the case of a linearly separable
dataset. By definition, there exists a hyperplane uTxþv¼ 0 with
positive margin d that can classify these points with zero error. We

can always choose dmin ¼ d; for all further discussion we assume
that this is the case. Without loss of generality, we consider
hyperplanes passing through the origin. To see that this is possible,
we augment the co-ordinates of all samples with an additional
dimension or feature whose value is always 1, i.e. the samples are
given by x̂i’fxi;1g; i¼ 1;2;…;M; also, we assume that the weight
vector is (nþ1)-dimensional, i.e. û’fu; vg.

Then, the margin, which is the distance of the closest point
from the hyperplane, is given by

d¼ min
i ¼ 1;2;…M

J ûT x̂i J
J û J

ðA:2Þ

R
d
¼ maxi ¼ 1;2;…M J x̂i J

mini ¼ 1;2;…M
J ûT x̂i J

J û J

¼ maxi ¼ 1;2;…M J û J J x̂i J

mini ¼ 1;2;…M J ûT x̂i J
ðA:3Þ

From the Cauchy–Schwarz inequality, we have

J ûT x̂i Jr J û J J x̂i J ðA:4Þ

⟹ max
i ¼ 1;2;…;M

J ûT x̂i Jr max
i ¼ 1;2;…;M

J û J J x̂i J ðA:5Þ

Therefore, from (A.3), we have

maxi ¼ 1;2;…;M J ûT x̂i J

mini ¼ 1;2;…;M J ûT x̂i J
rR

d
ðA:6Þ

or, in terms of the original variables u and v,

maxi ¼ 1;2;…;M JuTxiþvJ
mini ¼ 1;2;…;M JuTxiþvJ

rR
d

ðA:7Þ

Denoting

h¼maxi ¼ 1;2;…;M JuTxiþvJ
mini ¼ 1;2;…;M JuTxiþvJ

; ðA:8Þ

we can write

hrR
d
; ðA:9Þ

⟹h2r R
d

� �2

o1þ R
d

� �2

: ðA:10Þ

Assuming that the dimension n of the data samples is sufficiently
large, we have, from (1),

γr1þ R
d

� �2

: ðA:11Þ

Hence, (βAR, β40, such that

γrβh2: ðA:12Þ
We also note that

h2Z1; ðA:13Þ
the minimum being achieved when all samples are equidistant
from the separating hyperplane.

Also note that the VC dimension γ satisfies

γZ1: ðA:14Þ
In short, both h2 and γ have the same lower and upper bounds,

i.e. they are of the same order. Therefore, from (A.12)–(A.14), we
note that there exist constants α; β40, α; βAR such that

αh2rγrβh2; ðA:15Þ
or, in other words, h2 constitutes a tight or exact (θ) bound on the
VC dimension γ.

Table 4
Values of h for the linear and the kernel MCM.

Datasets Kernel MCM h Linear MCM h

Blogger 3.7371.90 2.5370.78
Fertility diagnosis 1.0070.00 2.7271.56
Promoters 1.0070.00 35.77718.58
Echocardiogram 8.0072.94 35.76718.58
Seed 8.3274.50 9.4673.28
Hepatitis 3.0271.49 2.0271.32
Teaching assistant 1.3870.47 2.1270.94
Plrx 1.0070.00 1.0070.00
Hayes 3.2371.11 5.0070.00
Glass 8.8077.96 13.6473.32
Heartstatlog 2.1271.87 3.7971.08
Horsecolic 1.2070.40 1.0070.00
Haberman 1.1870.24 1.0670.07
Ecoli 2.4171.02 4.8571.93
House voters 4.2470.83 4.4174.21
Wholesale customer 2.3670.97 19.7976.55
IPLD 6.4673.22 1.0070.00
Balance 8.7377.21 16.6070.80
Australian 1.0070.00 1.8670.43
Crx 1.0070.00 1.0070.00
Transfusion 2.0771.36 1.5770.71
Tic tac toe 1.5270.06 3.0771.04
Sorlie 1.0070.00 1.1270.17
Secom 8.3270.71 1.0070.00
Tian 1.2570.27 5.3172.26

Jayadeva / Neurocomputing 149 (2015) 683–689 687



Since the dataset has been assumed to be linearly separable, we
have

uTxiþvZ0 if yi ¼ 1 ðClass 1 pointsÞ ðA:16Þ

uTxiþvr0 if yi ¼ �1 ðClass �1 pointsÞ ðA:17Þ
We also have

JuTxiþvJ ¼ uTxiþv if uTxiþvZ0
�ðuTxiþvÞ if uTxiþvr0

(
ðA:18Þ

Therefore, from (A.16)–(A.18), we can write

JuTxiþvJ ¼ yi � ½uTxiþv�; i¼ 1;2;…;M: ðA:19Þ
Therefore,

h¼maxi ¼ 1;2;…;M yiðuTxiþvÞ
mini ¼ 1;2;…;M yiðuTxiþvÞ : ðA:20Þ

Appendix B. The hard margin MCM formulation

In this appendix, we derive the hard margin MCM formulation
in the input space. We begin with the optimization problem in (6),
which was obtained from the exact bound on γ derived in
Appendix A. In deriving the exact bound in Appendix A, we
assumed that the separating hyperplane uTxþv¼ 0 correctly
separates the linearly separable training points; hence, no other
constraints are present in the optimization problem (6). For the
convenience of the reader, (6) [also (A.20)] is reproduced as

minimize
u;v

h¼maxi ¼ 1;2;…;M yiðuTxiþvÞ
mini ¼ 1;2;…;M yiðuTxiþvÞ

The problem (6) may be rewritten as

min
u;v;g;l

g
l

ðB:1Þ

gZyi � ½uTxiþv�; i¼ 1;2;…;M ðB:2Þ

lryi � ½uTxiþv�; i¼ 1;2;…;M ðB:3Þ
This is a linear fractional programming problem [34]. We

apply the Charnes–Cooper transformation [see 34, p. 463]. This
consists of introducing a variable p¼ 1=l, which we substitute
into (B.1)–(B.3) to obtain

min
u;v;g;p;l

h¼ g � p ðB:4Þ

g � pZyi � ½p � uTxiþp � v�; i¼ 1;2;…;M ðB:5Þ

l � pryi � ½p � uTxiþp � v�; i¼ 1;2;…;M ðB:6Þ

p � l¼ 1 ðB:7Þ
Denoting w� p � u, b� p � v, and noting that p � l¼ 1, we obtain

the following optimization problem:

min
w;b;h

h ðB:8Þ

hZyi � ½wTxiþb�; i¼ 1;2;…;M ðB:9Þ

1ryi � ½wTxiþb�; i¼ 1;2;…;M ðB:10Þ
which may be written as

min
w;b;h

h ðB:11Þ

hZyi � ½wTxiþb�; i¼ 1;2;…;M ðB:12Þ

yi � ½wTxiþb�Z1; i¼ 1;2;…;M ðB:13Þ

We refer to the problem (B.11)–(B.13) as the hard margin Linear
Minimum Complexity Machine (Linear MCM). Note that h2 is an
exact bound on γ, the VC dimension of the classifier.

References

[1] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273–297.

[2] J.A. Suykens, J. Vandewalle, Least squares support vector machine classifiers,
Neural Process. Lett. 9 (3) (1999) 293–300.

[3] L. Yang, S. Yang, R. Zhang, H. Jin, Sparse least square support vector machine
via coupled compressive pruning, Neurocomputing 131 (2014) 77–86.

[4] S. Ding, X. Hua, Recursive least squares projection twin support vector
machines for nonlinear classification, Neurocomputing 130 (2014) 3–9.

[5] D. Wu, L. Shao, Multi-max-margin support vector machine for multi-source
human action recognition, Neurocomputing 127 (2014) 98–103.

[6] B. Li, S. Song, K. Li, A fast iterative single data approach to training
unconstrained least squares support vector machines, Neurocomputing 115
(2013) 31–38.

[7] Z. Wu, H. Zhang, J. Liu, A fuzzy support vector machine algorithm for
classification based on a novel {PIM} fuzzy clustering method, Neurocomput-
ing 125 (2014) 119–124.

[8] W. Wenjian, G. Husheng, J. Yuanfeng, B. Jingye, Granular support vector
machine based on mixed measure, Neurocomputing 101 (2013) 116–128.

[9] X. Peng, D. Xu, Bi-density twin support vector machines for pattern recogni-
tion, Neurocomputing 99 (2013) 134–143.

[10] A. Jalalian, S.K. Chalup, Gdtw-p-svms: variable-length time series analysis
using support vector machines, Neurocomputing 99 (2013) 270–282.

[11] X. Peng, D. Xu, Norm-mixed twin support vector machine classifier and its
geometric algorithm, Neurocomputing 99 (2013) 486–495.

[12] X. Huang, S. Mehrkanoon, J.A. Suykens, Support vector machines with
piecewise linear feature mapping, Neurocomputing 117 (2013) 118–127.

[13] T.A. Gomes, R.B. Prudêncio, C. Soares, A.L. Rossi, A. Carvalho, Combining meta-
learning and search techniques to select parameters for support vector
machines, Neurocomputing 75 (1) (2012) 3–13.

[14] T. Ni, W.-Z. Gu, J. Zhai, An inexact smoothing-type algorithm for support vector
machines, Neurocomputing 129 (2014) 127–135.

[15] X. Peng, D. Xu, Geometric algorithms for parametric-margin vector machine,
Neurocomputing 99 (2013) 197–205.

[16] G. Yin, Y.-T. Zhang, Z.-N. Li, G.-Q. Ren, H.-B. Fan, Online fault diagnosis method
based on incremental support vector data description and extreme learning
machine with incremental output structure, Neurocomputing 128 (2014) 224–231.

[17] A.L. Chau, X. Li, W. Yu, Convex and concave hulls for classification with support
vector machine, Neurocomputing 122 (2013) 198–209.

[18] Y. Kumar, M. Dewal, R. Anand, Epileptic seizure detection using {DWT} based
fuzzy approximate entropy and support vector machine, Neurocomputing 133
(2014) 271–279.

[19] A. Ruano, G. Madureira, O. Barros, H. Khosravani, M. Ruano, P. Ferreira, Seismic
detection using support vector machines, Neurocomputing 135 (2014)
273–283.

[20] H. Liu, S. Li, Decision fusion of sparse representation and support vector machine
for {SAR} image target recognition, Neurocomputing 113 (2013) 97–104.

[21] Y.-P. Zhao, J. Zhao, M. Zhao, Twin least squares support vector regression,
Neurocomputing 118 (2013) 225–236.

[22] R. Ji, Y. Yang, W. Zhang, Incremental smooth support vector regression for
takagi-sugeno fuzzy modeling, Neurocomputing 123 (2014) 281–291.

[23] Y.-P. Zhao, J.-G. Sun, Z.-H. Du, Z.-A. Zhang, Y.-C. Zhang, H.-B. Zhang, An
improved recursive reduced least squares support vector regression, Neuro-
computing 87 (2012) 1–9.

[24] L. Sun, C. de Visser, Q. Chu, J. Mulder, A novel online adaptive kernel method
with kernel centers determined by a support vector regression approach,
Neurocomputing 124 (2014) 111–119.

[25] C.J. Burges, A tutorial on support vector machines for pattern recognition, Data
Min. Knowl. Discov. 2 (2) (1998) 121–167.

[26] J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony, A framework for
structural risk minimisation, in: Proceedings of the Ninth Annual Conference
on Computational Learning Theory, ACM Desenzano sul Garda, Italy, June 28–
July 01, 1996, pp. 68–76.

[27] J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony, Structural risk
minimization over data-dependent hierarchies, IEEE Trans. Inf. Theory 44 (5)
(1998) 1926–1940.

[28] V.N. Vapnik, V. Vapnik, Statistical Learning Theory, vol. 2., Wiley, New York,
1998.

[29] B. Schölkopf, A.J. Smola, Learning with Kernels, “The” MIT Press Cambridge,
MA, USA, 2002.

[30] MATLAB, version R2012a, The MathWorks Inc., Natick, Massachusetts, 2012.
[31] K. Bache, M. Lichman, UCI Machine Learning Repository, 2013, URL: 〈http://

archive.ics.uci.edu/ml〉.
[32] J. Platt, et al., Sequential Minimal Optimization: A Fast Algorithm for Training

Support Vector Machines.

Jayadeva / Neurocomputing 149 (2015) 683–689688

http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref1
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref1
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref2
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref2
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref3
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref3
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref4
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref4
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref5
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref5
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref6
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref6
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref6
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref7
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref7
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref7
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref8
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref8
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref9
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref9
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref10
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref10
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref11
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref11
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref12
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref12
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref13
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref13
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref13
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref14
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref14
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref15
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref15
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref16
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref16
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref16
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref17
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref17
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref18
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref18
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref18
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref19
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref19
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref19
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref20
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref20
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref21
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref21
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref22
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref22
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref23
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref23
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref23
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref24
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref24
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref24
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref25
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref25
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref27
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref27
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref27
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref9000245
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref9000245
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref29
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref29
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


[33] S. Joshi, Jayadeva, G. Ramakrishnan, S. Chandra, Using sequential uncon-
strained minimization techniques to simplify svm solvers, Neurocomputing 77
(1) (2012) 253–260.

[34] S. Chandra, Jayadeva, A. Mehra, Numerical Optimization with Applications,
Alpha Science International, Oxford, UK., 2009.

Jayadeva obtained his B.Tech and Ph.D degrees from
the Department of Electrical Engineering, IIT Delhi, in
1988 and 1993 respectively. He is currently Microsoft
Chair Professor in the same department. He has been a
speaker of the IEEE Computer Society Distinguished
Visitor Programme, and is a recipient of the Young
Engineer Award from the Indian National Academy of
Engineering, the Young Scientist Award from the Indian
National Science Academy, and the BOYSCAST Fellow-
ship from the Department of Science and Technology,
Govt. of India. He was a URSI Young Scientist at the
General Assembly in Lille, France (1996), and received
the Sir J.C. Bose Young Scientist title from the Indian

Council of the URSI. He visited the Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology in 1997 as a BOYSCAST fellow. He spent a
sabbatical year as a visiting Researcher at IBM India Research Laboratory, from July
2006. One of his papers in Neurocomputing was listed on the Top25 hotlist; he is a
recipient of best paper awards from the IETE Journal of Research, and two other
conference papers. He holds a US Patent on A/D conversion, another on assessing
pronunciation abilities, and is the co-author of the book “Numerical Optimization
and Applications”. He has served on the Steering and Program Committees of
several international conferences. He was a keynote speaker at the International
Workshop on Mobile Technologies for Pervasive Healthcare, Philip Island, Australia,
in 2007, was tutorial chair for PrEMI 2009, delivered an invited talk at ICICS,
Singapore, 2011, and was a keynote speaker at the IEEE Symposium Series on
Computational Intelligence, Singapore, 2013. His research interests include Swarm
Intelligence, Machine Learning, Optimization, and VLSI. Amongst his recent works
that has received notable attention is the Twin Support Vector Machine, which in
July 2014 had around 275 citations.

Jayadeva / Neurocomputing 149 (2015) 683–689 689

http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref33
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref33
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref33
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref34
http://refhub.elsevier.com/S0925-2312(14)01019-4/sbref34

	Learning a hyperplane classifier by minimizing an exact bound on the VC dimension1
	Introduction
	The Linear Minimal Complexity Machine
	The kernel MCM
	Experimental results
	Conclusion
	Acknowledgment
	An exact bound on the VC dimension γ
	The hard margin MCM formulation
	References




