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Abstract—Classical OCRs based on isolated character 
(symbol) recognition have been the fundamental way of 
generating textual representations, particularly for Indian 
scripts, until the time transcription-based approaches gained 
momentum. Though the former approaches have been criticized 
as prone to failures, their accuracy has nevertheless been fairly 
decent in comparison with the newer transcription-based 
approaches. Analysis of isolated character recognition OCRs for 
Hindi and Bangla revealed most errors were generated in 
converting the output of the classifier to valid Unicode sequences, 
i.e., script grammar generation. Linguistic rules to generate 
scripts are inadequately integrated, thus resulting in a rigid 
Unicode generation scheme which is cumbersome to understand 
and error prone in adapting to new Indian scripts. In this paper 
we propose a machine learning-based classifier symbols to 
Unicode generation scheme which outperforms the existing 
generation scheme and improves accuracy for Devanagari and 
Bangla scripts. 

Keywords—Optical Character Recognition, Hidden Markov 
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I.  INTRODUCTION 
Optical Character Recognition (OCR) has been studied for 

many decades across various languages. Studies for OCR in 
Indic scripts gained popularity in the last decade [1] [2]. 
Though the performance of Indic script OCR’s have still not 
matured fully and are not yet comparable to their English 
counterparts [3]. This can be attributed to reasons such as 
complexity of scripts and lack of resources. In this paper, we 
have used the best available solution for OCRs in Indic 
Scripts, analyzed it to identify the most error prone module(s) 
and subsequently remediate the module(s) with new 
approaches to improve the performance of OCRs. The 
experiments in this paper have been carried out for 
Devanagari(Hindi) and Bangla Scripts. 

There have been a lot of attempts to recognize Indian 
scripts based on modeling the shape and intuitive features [1] 
[2]. The work to improve OCR output started with Bansal et 
al.[5] which was based on detection and correction [5] [6]. In 
the first work [5], they tried to use two separate dictionaries 
(lexicons as they describe) of root words and suffixes. Based 
on the grammatical matching error is identified and corrected 
using the dictionary. Previous work by Chaudhuri et al.[7] also 
used dictionary to identify and the correct errors. Though such 
approaches do improve accuracy but are limited to dictionary 

size. Scharwachter et al.[14] used Hidden Markov Models in 
an OCR pipeline to improve deciphering performance. 

However, little work has been carried out to improve the 
recognition system with thorough and exhaustive error 
analysis, thereby working in the aftermath of identified error 
generating sources, with approaches to improve performance 
i.e. reduction in the character or word error rate. There have 
been few attempts to augment the OCR with Language 
Models which have been successful to some extent but have 
not explored the area of Script Grammar learning, particularly 
for Indic Scripts.  

A. Indic Scripts 
Indic scripts share a lot of similarity in terms of features 

and are all phonetic in nature, in the sense that they are written 
the way they are spoken. There is no rigid concept of 
“spelling” as with the western writing systems [4]. Though 
with geographical influences; accents change leading to 
variations in spellings. 

Logical composition of script symbols with a common 
structure forms the basis of Indic Scripts, particularly the 
Brahmic ones; such a structure can be referred to as a "Script 
Grammar". This kind of structure has no counterpart in any 
other set of scripts in the world [4]. Indic scripts are visually 
composed of three zones which have been fairly exploited in 
designing the Classical OCRs [8]. This particular zoning 
seems to be very subtle way for feature engineering at 
segmentation and symbol recognition stages. However, this 
adds complexity to the Unicode generation phase of the 
overall system as we shall see in the subsequent sections. 

B. Classical OCRs for Indic Scripts 
The experiments have been conducted using Classical 

OCRs. The design paradigm can be broadly categorized into 
four stages namely (1) Pre-processing, (2) Segmentation, (3) 
Feature Extraction and Classification and lastly (4) Unicode 
generation from classifier symbols. The Pre-processing 
module carries out basic image processing tasks, such as Skew 
Correction, Binarization, etc [8]. Segmentation module works 
on the principles of connected components, segments the 
image into 3 zones: upper, lower and middle; with each zone 
containing literal symbols (full or partial character glyphs) [9] 
[10]. Feature extraction is carried out on the segmented literal 
symbols. Geometrical and geometry invariant (direction 
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flagging similar to Hough features) properties of the glyphs 
are used for feature engineering. The extracted features based 
on zones are fed to a cascade of classifiers (Support Vector 
Machine) for symbol label prediction [2]. The symbol labels 
thus predicted by the classifier are then combined with 
linguistic rules to generate the Unicode sequences. Figure 1 
shows the stages of OCR. 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Stages in OCR Pipeline used in performing experiments 

II. ANALYSIS OF ERROR 
Indic script OCRs have been analyzed on character or 

word error rate extensively. The confusion matrix reported 
also carries information about the overall accuracy of 
character identification [3]. However, the matrix tells nothing 
about the source of error, which is of prime importance for 
improving the recognition system. Also, the details of 
consonant cluster - conjuncts are completely missing, which 
forms a substantial part of Indic scripts. Thus, a module level 
analysis of the system was required to propose a new approach 
to reduce the error rates. The common benchmark data within 
Indian research community has been used for evaluation [12].  
Thorough analysis of the modules revealed that the major 
sources of errors are in generating Unicode sequence from 
classifier symbols (65.5%) followed by the Segmentation 
module (28.6%). Similar results have also been reported 
previously [13]. Unicode sequence generation errors were 

further classified based on linguistic features as represented in 
Table I. Thus, it was perceived that an improvisation of Rule 
Based Unicode generation would certainly reduce the overall 
error rates. 

TABLE I.  LINGUISTIC CLASSIFICATION OF OCR ERRORS 

Type of Error Percentage Composition 

Diacritic Error 18% 

Punctuation Error 10% 

Vowel Matra Error 26% 

Vowel/Consonant Error 41% 

Numeral (0-9) Error 5% 

 

III. METHODOLOGY FOR IMPROVEMENT 
The Unicode generation from classifier symbols can be 

formulated as a sequence learning problem [13], since we are 
generating Unicode from labels as identified by the classifier. 
The existing rule based module is very cumbersome to 
understand. Also, the integration of linguistics features is 
inadequate from a debugging perspective and integration of 
rules is Script (Language) specific. Thus, extending rule based 
Unicode generation scheme to any new Indic script involves 
developing (from scratch) a Unicode generation module for 
that particular script, which is intensive and error prone. 
Therefore, a learned Unicode generation scheme would be 
best suited in this scenario, as it would be extensible and 
would keep the linguistic difficulties at bay. 

A. Essentials for Unicode Generation 
Once a document is to be recognized, the input image is 

fed into the OCR pipeline. After the two stages, the segmented 
symbols are available, which are separated into zones, namely 
– upper, middle and lower. The upper and lower zones capture 
the modifiers (diacritics) and the middle zone captures the 
complete or partial character glyph. This is then followed by 
zone based feature extraction and subsequent recognition by 
the SVM cascade (Recognition Engine). The classifier labels 
generated by the Recognition Engine are mapped to Unicode 
code characters based on handcrafted Linguistic rules. 
Unicode sequence can be generated from classifier labels by 
imposing two constraints on the learning algorithm: (1) 
Symbols are to be translated into valid Unicode; this is not 
trivial since the symbols overlap in zones and literal symbols 
are combinations of full, partial or combined character glyphs 
making it quite challenging, (2) transposition that occurs in the 
script needs to be adjusted for and the correct combination of 
the sequence needs to be learned. Many approaches can be 
used for solving problems with these two constraints. For this 
purpose, Hidden Markov Models (HMMs) have been used, as 
HMMs have been applied successfully to solve speech and 
hand writing recognition problems [12].  This sequence 
learning problem requirement as discussed above can be well 
met by the HMMs. 
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B. Learning the Unicode Generation 
A significant conclusion from the discussion in the 

preceding section is that HMMs can be used to model Unicode 
sequence generation. HMMs should be able to learn a 
sequence/sequences of Unicode characters based on the 
observed states of symbol labels as generated by the SVM 
cascade.  

 The output label of the classifier is a number representing 
the segmented glyph. It may or may not represent a complete 
Unicode character. Middle zone classifier output values range 
from 0-300; similarly the upper and lower zone classifier 
symbol values is in range 0-30. Thus, upper and lower zone 
outputs have to be mapped to a different set to avoid overlap 
with the middle zone classifier outputs. The mapped values 
become the set of input states of HMM (360 states) and the 
corresponding Unicode symbols (165 states) as the set of 
observed states. Certain labels, for example 110, as shown in 
Stage 3 of Fig. 1 are responsible for generating 3 Unicode 
symbols – स , ◌,् म . Similarly, in some cases, two labels (40 
and 502) combine to give a single Unicode – ि◌. Thus, the 
observed states are greater than total Unicode symbols 
available for Devanagri. 

C. Data Preparation For Learning 
The Indic Scripts OCRs have been developed as part of a 

joint effort by many participating institutes over the last 
decade [3]. This collaborative effort resulted in development 
of a state-of-art recognition system for Indian languages. The 
design of the system was the focus of this as a research 
initiative and thus, the modules have been very tightly 
coupled. This led to a great effort in extracting the symbol 
labels out of the classifier. The existing code was modified to 
extract classifier symbol labels from the pipeline, unaltered by 
the generation module. Thus, prior Unicode generation 
pipeline of Classical OCR shall remain unchanged for our 
experiments.  

 

Fig. 2. HMM model accuracy for Training, Cross Validation and Unseen 
data acrross different training sizes for Hindi Script. 

IV. EXPERIMENTS, RESULTS AND DISCUSSION 
For the purpose of training and evaluation, the common 

benchmark data within Indian research community has been 

used [11]. This contains 5,000 pages of annotated data of 
which 20,000 sentences have been extracted. The data 
consisted of popular Hindi and Bengali books published in last 
5 decades. Initially, we faced issues with over fitting which 
was overcome by correcting the zone conflicts and 
understanding the conjuncts label generation. Challenges 
faced were similar for both the scripts. 

A. Results 
The experiments were carried out with varying training 

size across both the scripts- Devanagri(Hindi) and Bangla as 
shown in Fig. 2 and Fig. 3 respectively. The graph pattern 
shows that a basic generation scheme is learned with very 
little training data, i.e. an accuracy of about 89% is achieved 
with 1,000 sentences in case of both the scripts. We have 
achieved a gain of 3.3% for Hindi and 3.1% for Bangla scripts 
with 5,000 sentences of unseen data from the Indian 
benchmark dataset as shown in Table II. The experiment has 
been carried with the model with highest accuracy i.e. the 
model trained with 15,000 sentences. 

TABLE II.  COMPARISON OF CHARACTER ERROR RATES FOR BOTH THE 
SCHEMES 

Script 
Character Error Rate 

Existing Rule Based Generation 
Scheme 

HMM Based 
Generation Scheme 

Hindi  8.8% 5.6% 

Bangla 9.2% 6.1% 

 

 

Fig. 3. HMM model accuracy for Training, Cross Validation and Unseen 
data acrross different training sizes for Bangla Script. 

B. Analysis of Hindi Script 
The error patterns of both the generation schemes have 

been analyzed to identify underlying patterns. 

Error categorization has been carried out first by manually 
tagging each error and then by grouping similar errors into 
clusters for further analysis. After two iterations the categories 
of errors were finalized. The words with more than one error 
have been counted in more than one cluster. 



 

Fig. 4. Error classification in both of the generation schemes for Hindi 
Script. 

For Hindi Script, 40% of the HMM errors constitute 
conjuncts generation; 30% in case of rule based generation 
scheme followed by the category of Matra position fixation as 
shown in Fig. 4. 

Overall error composition has been shown in Fig.5, from 
which it can be concluded that there has been a reduction in 
almost all spheres of error categorization. Thus, this indicates 
that the HMM based formulations, excluding two cases 
(common pipeline), have been successful in reducing the 
overall error composition in each category. 

 

Fig. 5. Error composition under various categories of generation schemes for 
Hindi Script. 

 

Fig. 6. Venn Diagram illustrating the percentages of errors that are persistent 
(green) , solved (red) and introduced (blue) with new generation scheme for 
Hindi Script.  

HMM was able to correct 39.72.% of Rule based 
generation scheme errors mostly comprising of conjuncts, 
character additions and Matra position fixation. About 0.6% 
(10.31% of the total HMM errors) of new errors were 
introduced by HMM generation mainly consisting of rare 
occurring conjuncts. 

Fig. 7. Conjunct error rate on 5000 sentences of unseen data for Hindi 
(Devanagari) Script. 

Error classification in both of the generation schemes as 
shown in Fig 4 indicated a necessity for further analysis, 
particularly for conjuncts. Fig.7 shows the error rates for 
conjunct generation. The conjuncts are arranged in decreasing 
order of frequency of occurrence in training set. A steep rise in 
the middle of the curve for HMM error rate implies fewer 
instances of those conjuncts in training data. A hybrid 
approach in such a scenario could be formulated to further 
improve the accuracy of conjunct generation. 

C. Analysis of Bangla Script 
The analysis of Bangla script revealed similar patterns 

with Hindi Script probably because of the similar structure of 
underlying Script Grammar. 

Error classification analysis shows 33% percent of HMM 
generation errors belong to conjuncts category. The existing 
rule based generation scheme, on the other hand does 
maximum errors corresponding to Matra position fixation as 
shown in Fig 8.   

Fig. 8. Error classification in both of the generation schemes for Bangla 
Script. 

Fig. 9. Error composition under various categories of generation schemes for 
Bangla Script. 



Overall error composition as shown in Fig.9 indicates that 
in comparison with Hindi, Bangla rule based generation 
performs better in conjuncts category. This is due to the more 
frequent use of conjuncts in Bangla. However, it is also 
evident that matra positions constitute a larger proportion in 
overall error contribution. There has been an improvement in 
4 out of 6 categories of error classification. That justifies the 
overall error reduction of 3.1% in comparison with the 
existing generation scheme. 

 For Bangla script, HMM generation scheme was able to 
correct 44.09% of Rule based generation errors; mostly 
comprising of similar categories as in the case of Hindi Script. 
About 0.85% (13.97% of total HMM errors) of new errors 
were introduced by HMM generation. The same has been 
shown in Fig 10. 

 

 

 

Fig. 10. Venn Diagram illustrating the percentages of errors that are persistent 
(green) , solved (red) and introduced(blue) with new generation scheme for 
Bangla Script. 

Analysis of conjuncts generation for Bangla was also 
carried out. The results are similar to that of Hindi, as shown 
in Fig. 11. The plot has a steep rise towards the end indicating 
fewer occurrences of those conjuncts in training data. An 
amalgamation of two techniques (rule based and HMM) 
taking best of both, could further improve the recognition of 
conjuncts. 

Fig. 11. Conjunct error rate on 5000 sentences of unseen data for Bangla 
Script. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we model the Unicode generation as a Script 

learning problem from a set of labels to Unicode for two 
popular Indic Scripts- Hindi and Bangla. Error analysis of 
existing classical OCR systems and lack of formalism in 
symbols to Unicode generation was the motivation behind re-

engineering the existing generation module. We have used 
Hidden Markov Models (HMMs) to perform the desired task 
and used the data available within the research community to 
train and evaluate our approach. The current trend towards the 
use of recurrent neural networks, particularly BLSTM 
(Bidirectional Long Short Term Memory), is evident and was 
realized as supplementary to the discussed approach. 
Quantitative comparison with existing generation schemes is 
reported, with identification of areas for improvement. A 
hybrid approach of the two schemes could also be interesting 
to analyze. Results of two scripts have been promising and 
create new avenues for extending the approach to other Indic 
Scripts. It is expected that by adopting this approach; 
extending OCRs to new languages would be relatively 
simpler. It would be exciting to extend this approach to 
complex writing schemes such as Urdu, which would be 
different from the scripts that we have taken up in this paper. 
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