
Improving Classical OCRs for Brahmic Scripts
using Script Grammar Learning

Dipankar Ganguly*, Sumeet Agarwal*, Santanu Chaudhury*†
*Department of Electrical Engineering, Indian Institute of Technology, Delhi, India 110016

†Central Electronics Engineering Research Institute, Pilani, Rajasthan, India 333031
E-mail: eey147524@ee.iitd.ac.in, sumeet@ee.iitd.ac.in, schaudhury@gmail.com

Abstract—Classical OCRs based on isolated character
(symbol) recognition have been the fundamental way of
generating textual representations, particularly for Indian
scripts, until the time transcription-based approaches gained
momentum. Though the former approaches have been criticized
as prone to failures, their accuracy has nevertheless been fairly
decent in comparison with the newer transcription-based
approaches. Analysis of isolated character recognition OCRs for
Hindi and Bangla revealed most errors were generated in
converting the output of the classifier to valid Unicode sequences,
i.e., script grammar generation. Linguistic rules to generate
scripts are inadequately integrated, thus resulting in a rigid
Unicode generation scheme which is cumbersome to understand
and error prone in adapting to new Indian scripts. In this paper
we propose a machine learning-based classifier symbols to
Unicode generation scheme which outperforms the existing
generation scheme and improves accuracy for Devanagari and
Bangla scripts.

Keywords—Optical Character Recognition, Hidden Markov
Models, Indian Language Scripts

I. INTRODUCTION
Optical Character Recognition (OCR) has been studied for

many decades across various languages. Studies for OCR in
Indic scripts gained popularity in the last decade [1] [2].
Though the performance of Indic script OCR’s have still not
matured fully and are not yet comparable to their English
counterparts [3]. This can be attributed to reasons such as
complexity of scripts and lack of resources. In this paper, we
have used the best available solution for OCRs in Indic
Scripts, analyzed it to identify the most error prone module(s)
and subsequently remediate the module(s) with new
approaches to improve the performance of OCRs. The
experiments in this paper have been carried out for
Devanagari(Hindi) and Bangla Scripts.

There have been a lot of attempts to recognize Indian
scripts based on modeling the shape and intuitive features [1]
[2]. The work to improve OCR output started with Bansal et
al.[5] which was based on detection and correction [5] [6]. In
the first work [5], they tried to use two separate dictionaries
(lexicons as they describe) of root words and suffixes. Based
on the grammatical matching error is identified and corrected
using the dictionary. Previous work by Chaudhuri et al.[7] also
used dictionary to identify and the correct errors. Though such
approaches do improve accuracy but are limited to dictionary

size. Scharwachter et al.[14] used Hidden Markov Models in
an OCR pipeline to improve deciphering performance.

However, little work has been carried out to improve the
recognition system with thorough and exhaustive error
analysis, thereby working in the aftermath of identified error
generating sources, with approaches to improve performance
i.e. reduction in the character or word error rate. There have
been few attempts to augment the OCR with Language
Models which have been successful to some extent but have
not explored the area of Script Grammar learning, particularly
for Indic Scripts.

A. Indic Scripts
Indic scripts share a lot of similarity in terms of features

and are all phonetic in nature, in the sense that they are written
the way they are spoken. There is no rigid concept of
“spelling” as with the western writing systems [4]. Though
with geographical influences; accents change leading to
variations in spellings.

Logical composition of script symbols with a common
structure forms the basis of Indic Scripts, particularly the
Brahmic ones; such a structure can be referred to as a "Script
Grammar". This kind of structure has no counterpart in any
other set of scripts in the world [4]. Indic scripts are visually
composed of three zones which have been fairly exploited in
designing the Classical OCRs [8]. This particular zoning
seems to be very subtle way for feature engineering at
segmentation and symbol recognition stages. However, this
adds complexity to the Unicode generation phase of the
overall system as we shall see in the subsequent sections.

B. Classical OCRs for Indic Scripts
The experiments have been conducted using Classical

OCRs. The design paradigm can be broadly categorized into
four stages namely (1) Pre-processing, (2) Segmentation, (3)
Feature Extraction and Classification and lastly (4) Unicode
generation from classifier symbols. The Pre-processing
module carries out basic image processing tasks, such as Skew
Correction, Binarization, etc [8]. Segmentation module works
on the principles of connected components, segments the
image into 3 zones: upper, lower and middle; with each zone
containing literal symbols (full or partial character glyphs) [9]
[10]. Feature extraction is carried out on the segmented literal
symbols. Geometrical and geometry invariant (direction

mailto:eey147524@ee.iitd.ac.in,
mailto:sumeet@ee.iitd.ac.in,
mailto:schaudhury@gmail.com

flagging similar to Hough features) properties of the glyphs
are used for feature engineering. The extracted features based
on zones are fed to a cascade of classifiers (Support Vector
Machine) for symbol label prediction [2]. The symbol labels
thus predicted by the classifier are then combined with
linguistic rules to generate the Unicode sequences. Figure 1
shows the stages of OCR.

Fig. 1. Stages in OCR Pipeline used in performing experiments

II. ANALYSIS OF ERROR
Indic script OCRs have been analyzed on character or

word error rate extensively. The confusion matrix reported
also carries information about the overall accuracy of
character identification [3]. However, the matrix tells nothing
about the source of error, which is of prime importance for
improving the recognition system. Also, the details of
consonant cluster - conjuncts are completely missing, which
forms a substantial part of Indic scripts. Thus, a module level
analysis of the system was required to propose a new approach
to reduce the error rates. The common benchmark data within
Indian research community has been used for evaluation [12].
Thorough analysis of the modules revealed that the major
sources of errors are in generating Unicode sequence from
classifier symbols (65.5%) followed by the Segmentation
module (28.6%). Similar results have also been reported
previously [13]. Unicode sequence generation errors were

further classified based on linguistic features as represented in
Table I. Thus, it was perceived that an improvisation of Rule
Based Unicode generation would certainly reduce the overall
error rates.

TABLE I. LINGUISTIC CLASSIFICATION OF OCR ERRORS

Type of Error Percentage Composition

Diacritic Error 18%

Punctuation Error 10%

Vowel Matra Error 26%

Vowel/Consonant Error 41%

Numeral (0-9) Error 5%

III. METHODOLOGY FOR IMPROVEMENT
The Unicode generation from classifier symbols can be

formulated as a sequence learning problem [13], since we are
generating Unicode from labels as identified by the classifier.
The existing rule based module is very cumbersome to
understand. Also, the integration of linguistics features is
inadequate from a debugging perspective and integration of
rules is Script (Language) specific. Thus, extending rule based
Unicode generation scheme to any new Indic script involves
developing (from scratch) a Unicode generation module for
that particular script, which is intensive and error prone.
Therefore, a learned Unicode generation scheme would be
best suited in this scenario, as it would be extensible and
would keep the linguistic difficulties at bay.

A. Essentials for Unicode Generation
Once a document is to be recognized, the input image is

fed into the OCR pipeline. After the two stages, the segmented
symbols are available, which are separated into zones, namely
– upper, middle and lower. The upper and lower zones capture
the modifiers (diacritics) and the middle zone captures the
complete or partial character glyph. This is then followed by
zone based feature extraction and subsequent recognition by
the SVM cascade (Recognition Engine). The classifier labels
generated by the Recognition Engine are mapped to Unicode
code characters based on handcrafted Linguistic rules.
Unicode sequence can be generated from classifier labels by
imposing two constraints on the learning algorithm: (1)
Symbols are to be translated into valid Unicode; this is not
trivial since the symbols overlap in zones and literal symbols
are combinations of full, partial or combined character glyphs
making it quite challenging, (2) transposition that occurs in the
script needs to be adjusted for and the correct combination of
the sequence needs to be learned. Many approaches can be
used for solving problems with these two constraints. For this
purpose, Hidden Markov Models (HMMs) have been used, as
HMMs have been applied successfully to solve speech and
hand writing recognition problems [12]. This sequence
learning problem requirement as discussed above can be well
met by the HMMs.

आ क स ◌ ्म ि◌ क

Unicode Generation

Symbol Segmentation

2 40 13 40 502 110 13

Recognition

Pre-Processing

St
ag

e-
4

St
ag

e-
3

St
ag

e-
2

St
ag

e-
1

B. Learning the Unicode Generation
A significant conclusion from the discussion in the

preceding section is that HMMs can be used to model Unicode
sequence generation. HMMs should be able to learn a
sequence/sequences of Unicode characters based on the
observed states of symbol labels as generated by the SVM
cascade.

 The output label of the classifier is a number representing
the segmented glyph. It may or may not represent a complete
Unicode character. Middle zone classifier output values range
from 0-300; similarly the upper and lower zone classifier
symbol values is in range 0-30. Thus, upper and lower zone
outputs have to be mapped to a different set to avoid overlap
with the middle zone classifier outputs. The mapped values
become the set of input states of HMM (360 states) and the
corresponding Unicode symbols (165 states) as the set of
observed states. Certain labels, for example 110, as shown in
Stage 3 of Fig. 1 are responsible for generating 3 Unicode
symbols – स , ◌,् म . Similarly, in some cases, two labels (40
and 502) combine to give a single Unicode – ि◌. Thus, the
observed states are greater than total Unicode symbols
available for Devanagri.

C. Data Preparation For Learning
The Indic Scripts OCRs have been developed as part of a

joint effort by many participating institutes over the last
decade [3]. This collaborative effort resulted in development
of a state-of-art recognition system for Indian languages. The
design of the system was the focus of this as a research
initiative and thus, the modules have been very tightly
coupled. This led to a great effort in extracting the symbol
labels out of the classifier. The existing code was modified to
extract classifier symbol labels from the pipeline, unaltered by
the generation module. Thus, prior Unicode generation
pipeline of Classical OCR shall remain unchanged for our
experiments.

Fig. 2. HMM model accuracy for Training, Cross Validation and Unseen
data acrross different training sizes for Hindi Script.

IV. EXPERIMENTS, RESULTS AND DISCUSSION
For the purpose of training and evaluation, the common

benchmark data within Indian research community has been

used [11]. This contains 5,000 pages of annotated data of
which 20,000 sentences have been extracted. The data
consisted of popular Hindi and Bengali books published in last
5 decades. Initially, we faced issues with over fitting which
was overcome by correcting the zone conflicts and
understanding the conjuncts label generation. Challenges
faced were similar for both the scripts.

A. Results
The experiments were carried out with varying training

size across both the scripts- Devanagri(Hindi) and Bangla as
shown in Fig. 2 and Fig. 3 respectively. The graph pattern
shows that a basic generation scheme is learned with very
little training data, i.e. an accuracy of about 89% is achieved
with 1,000 sentences in case of both the scripts. We have
achieved a gain of 3.3% for Hindi and 3.1% for Bangla scripts
with 5,000 sentences of unseen data from the Indian
benchmark dataset as shown in Table II. The experiment has
been carried with the model with highest accuracy i.e. the
model trained with 15,000 sentences.

TABLE II. COMPARISON OF CHARACTER ERROR RATES FOR BOTH THE
SCHEMES

Script
Character Error Rate

Existing Rule Based Generation
Scheme

HMM Based
Generation Scheme

Hindi 8.8% 5.6%

Bangla 9.2% 6.1%

Fig. 3. HMM model accuracy for Training, Cross Validation and Unseen
data acrross different training sizes for Bangla Script.

B. Analysis of Hindi Script
The error patterns of both the generation schemes have

been analyzed to identify underlying patterns.

Error categorization has been carried out first by manually
tagging each error and then by grouping similar errors into
clusters for further analysis. After two iterations the categories
of errors were finalized. The words with more than one error
have been counted in more than one cluster.

Fig. 4. Error classification in both of the generation schemes for Hindi
Script.

For Hindi Script, 40% of the HMM errors constitute
conjuncts generation; 30% in case of rule based generation
scheme followed by the category of Matra position fixation as
shown in Fig. 4.

Overall error composition has been shown in Fig.5, from
which it can be concluded that there has been a reduction in
almost all spheres of error categorization. Thus, this indicates
that the HMM based formulations, excluding two cases
(common pipeline), have been successful in reducing the
overall error composition in each category.

Fig. 5. Error composition under various categories of generation schemes for
Hindi Script.

Fig. 6. Venn Diagram illustrating the percentages of errors that are persistent
(green) , solved (red) and introduced (blue) with new generation scheme for
Hindi Script.

HMM was able to correct 39.72.% of Rule based
generation scheme errors mostly comprising of conjuncts,
character additions and Matra position fixation. About 0.6%
(10.31% of the total HMM errors) of new errors were
introduced by HMM generation mainly consisting of rare
occurring conjuncts.

Fig. 7. Conjunct error rate on 5000 sentences of unseen data for Hindi
(Devanagari) Script.

Error classification in both of the generation schemes as
shown in Fig 4 indicated a necessity for further analysis,
particularly for conjuncts. Fig.7 shows the error rates for
conjunct generation. The conjuncts are arranged in decreasing
order of frequency of occurrence in training set. A steep rise in
the middle of the curve for HMM error rate implies fewer
instances of those conjuncts in training data. A hybrid
approach in such a scenario could be formulated to further
improve the accuracy of conjunct generation.

C. Analysis of Bangla Script
The analysis of Bangla script revealed similar patterns

with Hindi Script probably because of the similar structure of
underlying Script Grammar.

Error classification analysis shows 33% percent of HMM
generation errors belong to conjuncts category. The existing
rule based generation scheme, on the other hand does
maximum errors corresponding to Matra position fixation as
shown in Fig 8.

Fig. 8. Error classification in both of the generation schemes for Bangla
Script.

Fig. 9. Error composition under various categories of generation schemes for
Bangla Script.

Overall error composition as shown in Fig.9 indicates that
in comparison with Hindi, Bangla rule based generation
performs better in conjuncts category. This is due to the more
frequent use of conjuncts in Bangla. However, it is also
evident that matra positions constitute a larger proportion in
overall error contribution. There has been an improvement in
4 out of 6 categories of error classification. That justifies the
overall error reduction of 3.1% in comparison with the
existing generation scheme.

 For Bangla script, HMM generation scheme was able to
correct 44.09% of Rule based generation errors; mostly
comprising of similar categories as in the case of Hindi Script.
About 0.85% (13.97% of total HMM errors) of new errors
were introduced by HMM generation. The same has been
shown in Fig 10.

Fig. 10. Venn Diagram illustrating the percentages of errors that are persistent
(green) , solved (red) and introduced(blue) with new generation scheme for
Bangla Script.

Analysis of conjuncts generation for Bangla was also
carried out. The results are similar to that of Hindi, as shown
in Fig. 11. The plot has a steep rise towards the end indicating
fewer occurrences of those conjuncts in training data. An
amalgamation of two techniques (rule based and HMM)
taking best of both, could further improve the recognition of
conjuncts.

Fig. 11. Conjunct error rate on 5000 sentences of unseen data for Bangla
Script.

V. CONCLUSION AND FUTURE WORK
In this paper, we model the Unicode generation as a Script

learning problem from a set of labels to Unicode for two
popular Indic Scripts- Hindi and Bangla. Error analysis of
existing classical OCR systems and lack of formalism in
symbols to Unicode generation was the motivation behind re-

engineering the existing generation module. We have used
Hidden Markov Models (HMMs) to perform the desired task
and used the data available within the research community to
train and evaluate our approach. The current trend towards the
use of recurrent neural networks, particularly BLSTM
(Bidirectional Long Short Term Memory), is evident and was
realized as supplementary to the discussed approach.
Quantitative comparison with existing generation schemes is
reported, with identification of areas for improvement. A
hybrid approach of the two schemes could also be interesting
to analyze. Results of two scripts have been promising and
create new avenues for extending the approach to other Indic
Scripts. It is expected that by adopting this approach;
extending OCRs to new languages would be relatively
simpler. It would be exciting to extend this approach to
complex writing schemes such as Urdu, which would be
different from the scripts that we have taken up in this paper.

REFERENCES
[1] V. Govindaraju and S. Setlur, Guide to OCR for Indic Scripts. Springer,

2009
[2] U. Pal and B. B. Chaudhuri, “Indian Script Character Recognition: A

Survey ,” in Pattern Recognition, 2004, Pages 1887-1899
[3] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar,

B.B.Chaudhuri,A.G.Ramakrishna, C. Bhagvati, and G. S. Lehal, “
Experiences ofIntegration and Performance Testing of Multilingual
OCR for PrintedIndian Scripts,” in J-MOCR Workshop,ICDAR, 2011,
Pages 67-81

[4] R. Mahesh K. Sinha,"A Journey from Indian Scripts Processing to
Indian Language Processing",IEEE Annals of the History of Computing
Archive, Volume 31 Issue 1, January 2009 Pages 8-31

[5] V. Bansal and R. M. K. Sinha, “Partitioning and Searching Dictionary
for Correction of Optically Read Devanagari Character
Strings",International Journal on Document Analysis and Recognition,
2002, Volume 4, Number 4, Page 269

[6] V. Bansal and R. M. K. Sinha, “A Complete OCR for Printed Hindi Text
in Devanagari Script,” in ICDAR, 2001, Pages 800-805

[7] B. B. Chaudhuri and U. Pal, “An OCR System to Read Two Indian
Language Scripts: Bangla and Devnagari (Hindi),” in ICDAR,
1997.Pages - 1011-1016

[8] Utpal Garain and B. B. Chaudhuri, “Segmentation of Touching
Characters in Printed Devnagari and Bangla Scripts Using Fuzzy
Multifactorial Analysis,” in ICDAR, 2001, Pages 805-809

[9] Veena Bansal and R. M. K. Sinha, “Segmentation of touching and fused
Devanagari characters,” Pattern Recognition, vol. 35, no. 4, 2002. Pages
875 893

[10] Matusov, Evgeny and Kanthak, Stephan and Ney, Hermann, “On the
Integration of Speech Recognition and Statistical Machine Translation,”
in Proceedings of Interspeech, Lisbon, Portugal, 2005, Pages 467-474

[11] C V Jawahar and Anand Kumar, “Content-level Annotation of Large
Collection of Printed Document Images,” in ICDAR, 2007, Pages 78-84

[12] Naveen Sankaran, Aman Neelappa and C. V. Jawahar,"Devanagari Text
Recognition: A Transcription Based Formulation",ICDAR, 2013, Pages
678-682

[13] Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Fern, and
Thomas Dietterich,"Learning Scripts as Hidden Markov Models",
Proceedings of AAAI Conference on Artificial Intelligence (AAAI-
2014), Pages 1565-1571

[14] Erik Scharwachter, Stephan Vogel, "Solving substitution ciphers for
OCR with a semi-supervised hidden Markov model", vol. 00, no. , pp.
11-15, 2015

