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Abstract

In this paper, we present a study on games in which
the payoffs are dynamic, that is the payoffs change
with time, or are dependent on the strategy profiles
of the players. We investigate two such games: a
Language acquisition game, and the Spatial pris-
oner’s dilemma game. While games in which the
payoffs are constant have received much attention,
games with dynamic payoffs have not been stud-
ied extensively in literature. We show in this paper
that how such games can model real life situations
closely, like acquisition of a grammar by children
and evolution of culture.

1 Introduction

Game theory is a fascinating topic in economics
and mathematics. Of late, game theory has found
a lot of practical applications in the area of com-
puter sciences, particularly resource allocation and
selfish network routing. In this paper, we use the
concepts from game theory to model two natural
phenomena : One is of language acquisition, and
the other of spatial prisoner’s dilemma.

The paper is organized as follows : First, we
briefly discuss the basic concepts of games and
game theory. Then we define games with dynamic
payoffs, and how these games are different from the
usual games. In the next two sections, we describe
the language acquisition game, and the spatial
prisoner’s dilemma game. In these two sections,
we present the model employed, the simulations
carried out and the results obtained from the
simulations. Finally we discuss the significance
for these results, and how these models can be
extended in future work.

2 Basics of game theory

Game theory is essentially the study of multi-agent
decision problems. A game is a situation, where
more than one agents are competing for limited
payoffs. Each agent can make one among several
moves available to him, and the payoff to each
agent depends upon the moves taken by the other
agents in the game.

A game has the following components :

1. A set of Players : This is denoted by P =
{P1, . . . , Pn}, where n is the number of players
in the game.

2. Set of rules : The rules specify how the game
is to proceed.

3. Set of strategies : The set of strategies of
player Pi are denoted by Si = {Si1, . . . , Sisi}
where si is the number of strategies player Pi

has.

4. Set of outcomes : O, the possible strategy
combinations of all the players in the game.

5. Payoffs : ui(o) for each player Pi and each
outcome o ∈ O.

For example, consider the game of Prisoner’s
Dilemma shown in figure 1. For this game, there
are two players, Player 1 and Player 2. The set of
strategies of each player is the same, S = {C,D}
(C for cooperate, D for defect). There are certain
rules which each player has to follow, and he can
safely assume that others are following these rules.
In this game, each player can choose either cooper-
ate of defect. The player has to act independently
of the other player, and both have to choose their
move simultaneously. The payoffs for each player
corresponding to each strategy combination is
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Figure 1: The classical choice for payoff in Pris-
oner’s Dilemma (row player payoffs are given first)

given in the figure. We will discuss the spatial ver-
sion of this game in detail in later part of this paper.

The strategy profile of a player can either be
pure (in which case he always makes the same
move), or it can be mixed. A mixed strategy of a
player Pi is a probability distribution {pi1, . . . , pisi}
over the set of his strategies, such that

si∑

j=1

pij = 1 (1)

for all players Pi ∈ P . For example, in the game
of prisoner’s dilemma, a mixed strategy for the
two players can be {0.4, 0.6} and {0.5, 0.5}. This
means that, if the game was played repeatedly
for 100 moves, then P1 would choose C about
40 times, and D around 60 times, whereas P2

would choose C and D about 50 times each. The
payoff for each player can be calculated using the
probability distribution. In this case, for example,
the payoff of P1 will be 0.4× 0.5× 3 + 0.4× 0.5×
0 + 0.6 × 0.5 × 5 + 0.6 × 0.5 × 1, which is 2.4.
Similarly, the payoff of the second player comes
out to be 1.9.

Games can either be zero sum (or constant

sum, which means that the sum of payoffs of all
the players for all strategy combinations is zero),
or non zero sum, that is, the sum of payoffs of
all the players is not necessarily the same for all
strategy combinations. For example, the iterated
prisoner’s dilemma game is a zero sum game. A
game of tic tac toe is a zero sum game.

More details on games and their applications
can be found in (Neumann & Morgenstern,
1947), (Osborne & Rubenstein, 1994).

3 Games with dynamic pay-

offs

In the iterated prisoner’s dilemma, the payoffs of
the players for a strategy combination is a constant.
In games with dynamic payoffs, the payoffs are not
fixed, and can change with time (as in the case of
spatial prisoner’s dilemma), or can be dependent
on the strategy profile of the players (as in the lan-
guage acquisition game). Such games are more dif-
ficult to analyze, but are useful in modeling many
naturally occurring phenomenon.

4 The language acquisition

game

One of the most important aspects of languages
in humans in the grammar. A grammar is a set
of rules that maps linguistic form and meaning.
There are many interesting features of language
acquisition in humans. One is called the poverty

of stimulus, that is, the evidence available to the
child does not uniquely determine the underlying
grammatical rules. Nevertheless, children reliably
achieve correct grammatical competence, at a
very young age. This is known as the paradox of

language acquisition.

According to Chomsky (Chomsky, 1965), a
child needs a pre-formed linguistic theory that
can specify candidate grammars that might be
compatible with the available linguistic data. This
pre-specified theory is called the Universal Gram-

mar. Hence, for language acquisition, the child
needs a mechanism for processing input sentences
and a search space of candidate grammars from
which to choose an appropriate grammar. Here,
since we are studying language acquisition mainly
in the context of acquiring the correct grammar,
therefore we will use the terms “language acquisi-
tion” and “grammar acquisition” synonymously.
Also, we will be using the terms “child”, “player”
and “agent” interchangeably.

A detailed exposition on various models of
language acquisition can be found in (Niyogi,
2004). Jain et al (Jain et al., 1999) present
various learning models, that can be applied to
language acquisition as well. Here, we present a
game theoretic model to explain how language
acquisition takes place in humans. The language
acquisition game is inspired by the model proposed
by Komarova et al (Komarova et al., 2001), (Ko-
morava & Nowak, 2002) to explain the population
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dynamics of grammar acquisition. It has also been
employed to explain the natural selection of the
critical period of language acquisition (Komarova
& Nowak, 2001).

4.1 Description of the game

This game can be describes as follows :

• Agents : The game can have Kagents, repre-
sented as A1, . . . , AK . These agents are trying
to acquire a grammar by interacting with other
agents. In this paper, we focus our discussions
only for the case where K = 2.

• Set of strategies : Each agent has the same
strategy set, given byG = {G1, . . . , Gn}. Here,
G represents a Universal Grammar Set, i.e. the
set of grammars from which the agent has to
choose a grammar for himself.

• Strategy profile : The strategy profile of
agent Ai is given by si = {pi1, pi2, . . . , pin}
where pij = probability that Ai uses Gi for
communicating with other agents. Note that∑n

j=1
pij = 1.

• Rules : The 2 agent language acquisition
game is simulated as follows :

1. A move in the game corresponds to the
two agents speaking out a sentence simul-
taneously. The agent Ai speaks the sen-
tence using grammar Gij with probability
pij .

2. Each agent gets to know the sentence spo-
ken by the other agent in the previous
move. The agents checks this sentence
against each grammar of the universal
grammar set, and on the basis of it up-
dates his probability of using each of the
grammars.

The similarity between grammars is modeled
using a similarity matrix, {sij}. sij repre-
sents the probability that a sentence spoken
using grammar Gi will be compatible with the
grammarGj . Komarova et al have proposed a
method by which this similarity matrix can be
computed.

• Payoffs : Let xi = fraction of agents using
the grammar Gi. Then,

xi =
1

K

n∑

j=1

pji (2)

where K = number of agents in the popula-
tion (in this paper, we consider only K = 2).
For each grammar Gi, we define the fitness cor-
responding to the grammar fi as follows :

fi =
1

2

n∑

j=1

xj(sij + sji) (3)

The payoff of the agent Ai is given by the equa-
tion

ψi =

n∑

j=1

fjpij (4)

We further make a simplification by assuming a
fully symmetrical system, in which sii = 1 for all
i = 1, . . . , n and sij = s for i 6= j, 0 < s ≤ 1. For
such a system, in a 2 agent game, the respective
payoffs of the players, ψ1 and ψ2 are

ψ1 = s+
1

2
(1 − s)

n∑

j=1

p1j(p1j + p2j) (5)

ψ2 = s+
1

2
(1 − s)

n∑

j=1

p2j(p1j + p2j) (6)

Note that the maximum possible payoff of any
agent cannot exceed 1, and it cannot be less than
s. We assume that the agents are rational, that
is, each agent is trying to maximize his payoff.
However, none of the agents has any idea about
the strategy (i.e. the probability set) of the other
agent(s).

4.2 Learning mechanism

We employ the following learning mechanism for
each agent : After hearing a sentence σ, the agent
Ai checks if σ is compatible with Gj . If the sentence
is compatible, then the probability pij is updated
as follows:

pnew
ij = pold

ij + δ (7)

where δ is a parameter which can either be fixed,
or can change with the number of sentences heard.
After comparing σ with all the grammars in the
universal grammar set, the probabilities for the
agent a re-normalized (so that

∑n

j=1
pij = 1).

If a fixed value of δ is used, then it is ob-
served that the probability values for the two
agents change in a random fashion, and no equi-
librium is obtained as such. Therefore we employ
a simulated annealing learning model, in which δ

is given by

δ = 1 − e
−(1−ψ)
kt (8)
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where t = number of sentences heard by the
agent, ψ is the payoff for that particular agent, and
k is a variable that can be changed (the effect of
k parameter on grammar acquisition dynamics is
described later in the paper). Such a function for δ
satisfies the following two important properties

1. The value of δ decreases with increase in t, that
is, the change in probabilities of using gram-
mars decreases with time.

2. The value of δ is smaller for higher values of ψ,
that is, higher the payoff for that agent, lower
will be his tendency to change to a different
probability profile.

4.3 Simulations and results

We investigated the outcome of the above game for
2 players with small number of grammars (n = 3)
in the universal grammar set. The results of the
simulations are described here.

In general, the results can be summed up as
follows : The probabilities to which the two agents
converge to depends upon the initial conditions.
For low values of s (i.e., when the similarity
between the grammars in low), the two agents
tend to attain the same probabilities of using the
grammars. For higher values of s, the probabilities
remain close to the initial values, and no agreement
between the two agent emerges. If a higher value
of k is used, the probabilities tend to reach a
steady value quickly, although the two agents do
not tend to converge to the same probabilities
for the grammars. If a low value of k is used,
the probabilities tend to fluctuate arbitrarily. For
all the simulations described here, we have used
a value of 1.00 for k, which gives an optimal
performance with respect to learning for both the
agents.

Figures 2 and 3 show how the probabilities
change for the two agents for s = 0.0 (i.e. no
similarity between the grammars of the universal
grammar set) and a given set of initial probabilities.
In this case, a mixture of two grammars emerges
as the equilibrium between the two agents. This
shows that the agents are indeed able to converge
together on the usage of particular grammar(s).
Figures 4 and 5 show how the fitness of the two
agents vary with time. It is clear that the two
agents are able to reach a good fitness level after
speaking only a few sentences.
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Figure 2: Plot of strategy profile of Agent 1 for
s = 0.0
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Figure 3: Plot of strategy profile of Agent 2 for
s = 0.0
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Figure 4: Plot of fitness (payoff) of Agent 1
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Figure 5: Plot of fitness (payoff) of Agent 2
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Figure 6: Plot of strategy profile of Agent 1 for
s = 0.25
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Figure 7: Plot of strategy profile of Agent 2 for
s = 0.25
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Figure 8: Plot of strategy profile of Agent 1 for
s = 0.80
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Figure 9: Plot of strategy profile of Agent 2 for
s = 0.80

When s = 0.25, the two agents still tend to at-
tain the same probabilities of using the grammars,
however this time the convergence of the two agents
to the same probabilities is not as sharp as it was
in the previous case. This case is shown in figures 6
and 7. With increasing value of s, the two agents
do not tend to converge to same grammars. This
is because the similarity between the grammars in-
creases, and therefore they can communicate suc-
cessfully with each other even if they use differ-
ent grammars. As an example, the plots for the
case s = 0.80 have been shown in figures 8 and 9.
The plots clearly reflect the trend mentioned before.
When s = 1.00, the probabilities do not change at
all, i.e. probabilities values remain same as the ini-
tial values throughout. This is expected, since in
this case, the two agents can always communicate
successfully irrespective of the grammars they use.
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4.4 Evaluation of the model

The model for language acquisition proposed here
works remarkably well for two person case. Though
such cases, where two individuals are simultane-
ously trying to acquire a grammar without any ex-
ternal help have not been empirically studied, nev-
ertheless this model makes an attempt to show how
the two agents will acquire a grammar simultane-
ously. It would be interesting to study the dynam-
ics of grammar acquisition when there are more
than two agents in the population, and with more
grammars in the universal grammar set.

5 The Spatial Prisoner’s

Dilemma

The most famous of all the situations modeled us-
ing game theory is the classic Prisoner’s Dilemma.
In the basic version of this game, we have two
prisoners being interrogated by the police. Both
have the option of either confessing their crime
or denying it. The police offer them a bargain
whereby if one of them confesses and the other
doesn’t, the one who confessed goes scot-free, while
the other gets 5 years in jail. If both confess, they
get 3 years each, but if neither does so, then the
police has insufficient evidence to convict them, so
they only get 1 year each on a lighter charge. This
situation is represented by the payoff matrix in
figure 1. For a single game, the dominant strategy
(which is sub-optimal) is to confess (or defect,
represented as D in the figure). However, the
game becomes more interesting when played in an
iterated fashion, with the opportunity to respond
to the opponent’s moves.

The spatial prisoner’s dilemma game extends
the concept to a two-dimensional grid. Each
individual is surrounded by 8 neighbors, and plays
the game with each of them simultaneously. On
any given turn, a player must adopt one common
strategy for all the games, and then will receive
separate payoffs from each one (depending on the
particular opponent’s strategy), as per the payoff
matrix. The total payoff will be defined as the
sum of these 8 individual game payoffs. After each
turn, a player may switch strategies based on his
result in the previous round. Tomochi and Kono
(Tomochi & Kono, 2002) studied this game using
a copycat learning algorithm, whereby each player
would look at the payoffs of all his neighbors and
himself, and then pick up the strategy of the one
with the highest payoff among these for the next
round.

Figure 10: Payoff matrix for Spatial Prisoner’s
Dilemma

The game is made more interesting (and real-
istic) if we allow for changes in the payoff matrix.
For instance, we may think of this game as
modeling social interactions in general, where
cooperative behavior is more desirable for the
general good, but competitive behavior may bring
higher individual gain. To offset the tendency
to behave competitively, society might therefore
impose a punishment on such behavior, and this
punishment might be increased with increase in
the number of competitors, in order to try and
push individuals back towards cooperation. With
this general idea as the basis, Tomochi and Komo
(Tomochi & Kono, 2002) proposed an evolution
rule for the payoff matrix. The general form of this
matrix can be represented as in Figure 10.

Here, S < P < R < T. Now, we may fix S=0
and T=1 as the endpoints of our payoff scale, and
vary only P and R, always subject to the condition
P < R. The following equations were used for this
purpose:

P (t+ 1) = P (t) − kg(pD(t) − p∗D) (9)

R(t+ 1) = R(t) + k
′

g(pD(t) − p∗D) (10)

Here, g is some function, k and k
′

are constants,
pD(t) is the proportion of defectors in the pop-
ulation at time t, and p∗D is the tolerance limit,
i.e. if defection level surpasses it, then punishment
for defection is correspondingly increased. For our
simulations, we set g(x) = x; k = k

′

= 0.01; and
p∗D = 0.5. In addition to the aforementioned copy-
cat method, we also ran simulations using the two
most successful strategies in the two-player pris-
oner’s dilemma, tit-for-tat (TFT) and Pavlov, in
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Figure 11: Threshold Values of R for Emergence of
Cooperation with Copycat Updation

order to see how these different methods of upda-
tion influenced the evolution of cooperation in the
population. The results of these simulations are
reported in the next section.

5.1 Method

The simulations were run in Java, using separate
matrices to represent the member strategies and
payoffs. TFT was simulated by having each mem-
ber, at each turn, adopt the strategy that was
adopted by the majority of his 8 neighbors on the
previous turn. In case of a 4-4 split, the individual
would retain his old strategy. Pavlov was simu-
lated by having each individual switch strategies if
and only if his payoff for the previous turn was less
than 4 (half of 8, the maximum possible payoff).
Parameters like the initial values of P and R and
the initial cooperation level were kept fixed in some
cases and varied in others. After the initial cooper-
ation level had been fixed, the distribution of initial
strategies (’C’ or ’D’) among the members was ran-
domly done. Techniques and results for each of the
three updation methods are now presented in more
detail.

5.2 Copycat Updation

For copycat updation, the technique used was that
on each turn, each individual looked at the payoffs
of all his neighbors, as well as his own payoff
(on the previous turn), and from amongst these 9
options chose the strategy (on the previous turn) of
the one with the highest payoff, as his own strategy
for the coming turn. A few preliminary simulations
showed that the final convergent cooperation level
and final average payoff level were essentially

Figure 12: Stable Cooperation Levels with TFT
Updation

independent of the initial cooperation level. Thus,
the initial cooperation level was fixed at 0.5 for all
the simulations, i.e. half of the population started
with strategy ’C’, the other half with strategy ’D’.
Grid size was fixed at 1000x1000, and 200 rounds
were played per simulation. It was seen that for a
given initial value of P, there existed a threshold
initial value of R, i.e. if the initial value of R was
above the threshold, cooperation would evolve,
otherwise it would not. So we focused our efforts
on finding these threshold initial values of R for
different initial values of P (from 0.1 to 0.5). The
results are shown in Figure 11.

In all cases when R was initially below the thresh-
old, the final cooperation level was 0, as was the
final average payoff. When R started out above the
threshold, cooperation level converged to around 50
percent (varying from 35-65), while average payoff
converged to around 4.3 (varying from 3.5-5.0). As
can be seen from the figure, the threshold initial
value of R rises with rise in the initial value of P,
going from around 0.5 (P(0) = 0) to 0.7 (P(0) =
0.5). Thus, we see that the final state of the popu-
lation is entirely dependent on the initial values of
P and R, and is independent of the initial strategy
distribution.

5.3 Tit-for-Tat updation

For TFT, the technique used was that each indi-
vidual adopted the strategy used by the majority
of his neighbors on the previous turn. Since
the changing of strategies was based purely on
opponent strategies (and not on their payoffs), the
values of P and R had no impact on the evolution
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Figure 13: Stable Average Payoffs with TFT Up-
dation

of the population’s strategy distribution. So, these
were fixed at 0.4 and 0.6 respectively. Also, grid
size was kept at 1000x1000, and number of rounds
per simulation at 100. The initial cooperation
percentage was varied from 0.1 to 0.9, and based
on this, the convergent values of cooperation level
and average payoff after 100 rounds were recorded.
The results are shown in Figures 12 and 13.

As can be seen from Figure 12 , when cooperation
level is below half to start with, it tends to disap-
pear completely, whereas when it is initially above
0.5, we get a fairly high (though not necessarily
100 percent) cooperation level convergence. Also,
the average payoff too nearly vanishes when coop-
eration level is below 0.5 initially, but converges to
around 4.0 when cooperation is above 50 percent at
the beginning. So, we see that the final situation
depends entirely on how cooperative the population
is to start with.

5.4 Pavlov updation

For Pavlov, also known as the win-stay, lose-shift
strategy, the technique used was that any payoff of
4.0 or above was considered a win, and so strategy
was switched only if a payoff of under 4.0 was
obtained. This was in line with the technique used
by Nowak and Sigmund (Nowak & Sigmund, 1993)
for the two player Prisoner’s Dilemma,where they
showed that under certain conditions, Pavlov could
beat TFT. Preliminary simulations showed that,
like for Copycat, for Pavlov too the final state was
not influenced by the initial cooperation level in
the population. So the initial cooperativeness was
fixed at 50 percent, while grid size was fixed at
500x500. Number of turns per simulation was kept

Figure 14: Approximate Stable Cooperation Levels
with Pavlov Updation

Figure 15: Approximate Stable Average Payoffs
with Pavlov Updation

at 300. Simulations were run for different initial
values of P and R. It was found that there was
no clear dependence relation between these values
and the final population state. Some amount of
cooperation was always seen to emerge, but never
a very high amount. The average payoff too tended
to fluctuate anywhere in the 3.0-5.0 range. Results
for one sample case, with initial value of P as 0.1
and initial value of R varying from 0.5 to 1.0, are
shown in Figures 14 and 15.

It is evident from the results that the variance
based on the initial P and R values is more or less
random, though there is perhaps a slight increasing
trend in both cooperativeness and average payoff,
with increasing value of R(0). Increasing the ini-
tial value of P from 0.1 to 0.5 also showed no major
change, only a similar slight increasing trend. Thus,
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these results suggest that if Pavlov is used, the fi-
nal result is nearly the same irrespective of all the
initial conditions, and cooperation does evolve to
some extent, allowing for a decent average payoff
to the population members.

5.5 Discussion of Results

We have seen how the cooperation level and aver-
age payoff evolves in the population under different
kinds of learning or updation strategies being used
by the members. From these results, it can be said
that, in some sense, Pavlov is the ’best’ updation
model, as it seems to lead to approximately 50
percent cooperation and a decent average payoff,
irrespective of the initial conditions. Of course,
these values keep fluctuating, as members keep
switching strategies whenever their payoff goes
below 4.0, and this also means that this can be
regarded as a ’fair’ model, since in the long run
everyone obtains similar overall benefit.

The copycat model, seemingly the most natu-
ral one in a situation such as this, was found to
give good results in terms of cooperativeness and
average payoff, only when the initial reward for
mutual cooperation (i.e. the value of R) was above
a certain threshold level. So, if there is insufficient
incentive to cooperate at the start, the rate of
defection goes down too fast, and cooperation is
never able to evolve after that, even though the
value of R subsequently increases by the evolution
rule, as given in equation (10). The threshold
levels could be changed by tweaking the values of
k and k

′

, to allow for faster or slower evolution of
payoffs.

The TFT updation rule seems to be potentially
the most damaging in this situation, as it will
never allow cooperation to evolve in a population
that does not initially have a cooperative majority.
In cases where there is an initial cooperativeness of
more than 50 percent, TFT does lead to a decent
convergent average payoff of 4.0, but it may not
always ensure fairness, as there may be individuals
who are surrounded by defectors and thus cannot
benefit as much as those having cooperative
neighbors. In cases where the cooperation level is
more than 0.5 to start with, but R(0) is below the
copycat model threshold value for the given P(0),
TFT will actually be better than copycat, but in
general it is the least preferable of the three models.

Many changes are possible in the game model used
here, and perhaps tweaking the values of parame-
ters like k, k

′

and p∗D, or using some more complex

function for g(x), might give different results that
may aid greater understanding of real-life social
interaction. Also, this model does not take into
account evolution of the population itself, and this
is something else that may be looked at in future
work. On the whole, the results show that all
three considered updation strategies can lead to
the evolution of cooperation, and thus any one of
them, or quite likely some kind of mixture of all 3,
may well be in use in human society in general.

6 Conclusions

We have looked at two games with dynamic payoffs,
and tried to discover the equilibrium states reached
in these games, and how the strategies and payoffs
of the population members evolve with time. Both
these games are close to very pertinent real-life sit-
uations - human language acquisition and human
social interaction. The significance of our work lies
in having shown that such situations can be mod-
eled as dynamic-payoff games, and that the study
of these games can lead to useful results pertain-
ing to the given situations. Not much work has
been done in relation to such games, and we hope
that our very limited work can be extended in the
future to take into account more of the variables
that are implicit in the corresponding real-world
’games’, in order to better understand them from a
game-theoretic perspective.

7 Acknowledgments

We would like to thank Dr. Pabitra Mitra and Dr.
Amitabha Mukerjee for their guidance during the
course of this project. For fruitful discussions on
game theory, we thank Dr. Pabitra Mitra, Dr.
Mainak Chaudhuri, Utsav, Mathew and Maunen-
dra.

References

Chomsky, N. (1965). Aspects of the theory of syn-

tax. Cambridge, MA, USA: MIT Press.

Jain, S., Osherson, D., Royer, J. S., & Sharma,
A. (1999). Systems that learn. Cambridge, MA,
USA: The MIT Press. 2nd edition.

Komarova, N. L., Niyogi, P., & Nowak, M. A.
(2001). The evolutionary dynamics of grammar
acquisition. Journal of Theoretical Biology, 209,
43–59.

9



Komarova, N. L., & Nowak, M. A. (2001). Nat-
ural selection of the critical period for language
acquisition. Proceedings of The Royal Society of

London (pp. 1189–1196).

Komorava, N. L., & Nowak, M. A. (2002). Pop-
ulation dynamics of grammar acquisition. In
A. Cangelosi and D. Parisi (Eds.), Simulating

the evolution of language. New York, NY, USA:
Springer-Verlag New York.

Neumann, J. V., & Morgenstern, O. (1947). Theory

of games and economic behaviour. Princeton, NJ,
USA: Princeton University Press.

Niyogi, P. (2004). The computational nature of lan-

guage learning and evolution. In press.

Nowak, M., & Sigmund, K. (1993). A strategy of
win-stay, lose-shift that outperforms tit-for-tat in
the prisoner’s dilemma game. Nature, 364, 56–58.

Osborne, M. J., & Rubenstein, A. (1994). A course

in game theory. Cambridge, MA, USA: MIT
Press.

Tomochi, M., & Kono, M. (2002). Spatial pris-
oner’s dilemma games with dynamic payoff ma-
trices. Physical Review E, 65.

10


