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Abstract. We compare several ConvNets with different depth and reg-
ularization techniques with multi-unit macaque IT cortex recordings and
assess the impact of the same on representational similarity with the pri-
mate visual cortex. We find that with increasing depth and validation
performance, ConvNet features are closer to cortical IT representations.

1 Introduction

With the success of convolutional neural networks in object image classifica-
tion [1–4], it is of interest to examine how similar the representations learnt
by these networks are to the visual representations learnt by the human brain
[5–7]. In Cadieu et al.’s pioneering work on understanding representational sim-
ilarity [8], a comparison of the pre-final layer activations of deep neural net
models with multi-unit IT cortex responses is presented, which confirms a sig-
nificant correspondence between the two representations for the task of core
object recognition. We aim to shed more light on the role of engineered aspects
of these deep networks, examining the effect of variation in regularization, net-
work depth and model size on the representational similarity to multi-unit IT
responses and classification accuracy. This can help understand whether sparsity
and increased network depth create representations which are closer to represen-
tations employed by the primate visual cortex, and also validate the hypothesis
that the mammalian visual cortex is the best known object detector, by check-
ing whether increased proximity to cortical representations implies an increase
in recognition performance.

2 Methodology

For each ConvNet, we supply input images from n output classes and perform a
feed-forward operation to obtain the layer-wise activations, and extract the ac-
tivation at the penultimate fully-connected layer. For any network architecture
N , we denote the set of activations for the image set by AN . For any particular
target class i ∈ [1, n], the set of activations is given by Ai

N . For any set of acti-
vations, we can define the average activation as φ(Ai

N ) = (
∑

a∈Ai
N
a)/(|Ai

N |).
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Fig. 1. (Repro-
duced from [8].)
Samples from the
dataset introduced
by [8].

Given these representations, we can compute the representational dissimilar-
ity matrix RN as ([8])

RN = (rij) = 1−
σ(φ(Ai

N ), φ(Aj
N ))√

σ2(φ(Ai
N ))× σ2(φ(Aj

N ))
;RN ∈ Rn×n

Where σ and σ2 denote covariance and variance respectively. We compute
this matrix for the cortical responses as well, treating the responses as the set of
activations as RIT . To measure representational similarity, we use “similarity to
IT dissimilarity matrix” (sIT ) as the default metric [8], which is as the Spear-
man’s rank correlation between the upper triangular, non-diagonal elements of
the two matrices RN and RIT . In essence, this metric would be expected to
encapsulate the nature of variation across classes for each representation [8].

To create the image set for activations, we randomly sample images from the
total set in a manner identical to [8]. We also add noise to the ConvNet activa-
tions in order to account for the measurement noise present in the IT cortical
responses following the experimental noise matched model in [8].

Dataset Cadieu et al. [8] introduce a dataset of multi-unit V4 and IT cortex
responses across two male rhesus monkeys while they were presented syntheti-
cally generated object image samples. These recordings were taken from the 128
most visually driven neural measurement sites determined via a separate pilot
dataset. We employ these recordings as the inferior-temporal (IT) representa-
tions (features) for our comparative experiments, and we have a total of 1,960
images for 7 categories (see Figure 1).

Evaluation We evaluate the best performing ConvNet architectures on Ima-
geNet LSVRC and employ their publicly available pre-trained weights. We ex-
periment on both the original architectures and retrained architectures using
different regularization schemes - L1, L2 (default) and DeCov [9]. DeCov tries
to learn independent, generalizable filters by minimizing the covariances of filter
activations, with the additional DeCov loss LDeCov at each hidden layer given
by ([9])

LDeCov =
1

2
(‖C‖2F − ‖diag(C)‖22)

C = (ci,j) =
1

|Abatch
N |

∑
k

(hki − µi)(h
k
j − µj)
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Fig. 2. Variation of representational similarity sIT with model regularization (left)
and validation performance (right). We see that representational similarity consistently
increases with validation performance across architectures.

The diag(·) operator extracts the main diagonal of a matrix into a vector. The
function C is the matrix of covariances of all pairs of activations hki , h

k
j at a

hidden layer k, and Abatch
N ⊂ AN is the sample batch during training of archi-

tecture N , and µi = 1
|Abatch

N |
∑

k h
k
i is the sample mean of activation i over the

batch. We add this loss to each layer of the DeCov network [9] and tune the
hyperparameter via cross-validation. For L1, we replace weight-decay (L2) with
L1-norm, and tune via cross-validation. We maintain the original weight decay
formulation and weights for L2. All networks are trained with dropout.

3 Results and Conclusions

While Cadieu et al. [8] validated the plausibility of deep neural net repre-
sentations being similar to cortical representations, our work seeks to examine a
wider range of variation in the characteristics of the deep learning models used.
Our results show that by increasing network depth, we observe a marginal in-
crease in representational similarity, which is also consistent with an increase in
validation accuracy. Another interesting result is that by decorrelating represen-
tations, we observe a higher representational similarity, even though validation
performance is similar. Our experiments offer a preliminary understanding of the
effect of network depth and model complexity control on the similarity between
deep neural net and cortical representations. Such an approach can help pro-
vide some pointers to the learning architectures and mechanisms employed by
the brain. Substantial further work needs to be done: comparison of lower-layer
activations of the network with preliminary regions of object recognition (V1,
V2), visualization of the effect of context on representational similarity and un-
derstanding the impact of dropout and structural risk minimization on networks
are some extensions we have initiated. The ultimate aim is to create models
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Deep
Layers sIT

Accuracy ImageNet Top-5
Network on [8] Error Rate

Original Architectures

AlexNet [1] 8 0.507 (±0.032) 0.523 (±0.025) 18.1%
ZFNet [10] 8 0.531 (±0.026) 0.568 (±0.019) 16.0%

VGGNet-16 [2] 16 0.557 (±0.018) 0.580 (±0.021) 7.5%
VGGNet-19 [2] 19 0.559 (±0.020) 0.582 (±0.023) 7.5%
GoogLeNet [3] 22 0.551 (±0.025) 0.575 (±0.021) 7.89%
ResNet-50 [4] 50 0.564 (±0.033) 0.601 (±0.011) 5.25%
ResNet-101 [4] 101 0.567 (±0.027) 0.603 (±0.010) 4.60%
ResNet-152 [4] 152 0.568 (±0.029) 0.612 (±0.013) 4.49%

Modified Architectures

AlexNet-L1[1] 8 0.378 (±0.045) 0.413 (±0.019) 27.2%
ZFNet-L1[1] 8 0.383 (±0.032) 0.431 (±0.017) 23.9%

VGGNet-16-L1[1] 16 0.405 (±0.017) 0.434 (±0.029) 13.5%
VGGNet-19-L1[1] 19 0.411 (±0.026) 0.437 (±0.015) 12.9%
AlexNet-DeCov [9] 8 0.539 (±0.019) 0.521 (±0.027) 20.0%
ZFNet-DeCov [9] 8 0.541 (±0.018) 0.528 (±0.025) 18.8%

VGGNet-16-DeCov [9] 16 0.562 (±0.012) 0.556 (±0.019) 11.6%
VGGNet-19-DeCov [9] 19 0.563 (±0.015) 0.561 (±0.024) 11.2%

Table 1. A comparison
of the representational
similarity of ConvNets
to the IT cortex (sIT ),
as per [8]. Original accu-
racies on ImageNet are
reported directly. Accu-
racy on the data set of
[8] is obtained using a
linear SVM trained on
pre-final activations.

similar to humans in both representation and performance on complex vision
tasks, as a means of better understanding, or ‘reverse engineering’, the human
visual system itself.
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