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Abstract

High-throughput omics data is pouring out in copious amounts. It offers mea-

surements for cell components at different stages of the central dogmatic view of

information flow. This data can be used to construct a network level understand-

ing of biological systems and functions such as inferring a gene regulatory network.

Many computational techniques are readily available to infer gene regulatory net-

works from high-throughput experiments. One suggested way of improving the

performance of these techniques is meta-analysis—combining the predictions from

different methods. In this regard, we propose a meta-strategy for combining meth-

ods and show that this strategy might help with the inference task both globally

and locally. Another proposed way for improving the performance is the use of

domain-specific prior information such as the distribution of the number of reg-

ulatory links in biological networks. However, there hasn’t been a systematic

analysis of either the methods that incorporate such structural priors or the priors

themselves in the network inference field. We perform a systematic study of three

different ways of incorporating such prior information in the network inference

task. One of these has been developed as part of this work, leveraging an existing

framework. The analysis shows that the prior information helps both globally and

locally in network inference. We further explore the possibility of incorporating

structural motif related properties into the scale free prior; and suggest possible

frameworks to accomplish this. Finally, we propose a framework for including

both indegree and outdegree distributions as prior to augment the network infer-

ence task.
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Chapter 1

Introduction

1.1 Motivation

Sequencing the genome for many organisms at the dawn of 21st century was a

remarkable feat. It has ushered the era of “Omics” technologies where high-

throughput data is readily available at all levels of the “Central Dogma”. At

the genome scale there is Gene Sequencing data. At the transcriptome scale, Mi-

croarray and RNAseq technologies assist in measuring the expression of thousands

of transcription units simultaneously without loss in quality. Proteomics data can

be collected using hybrid systems such as the yeast two-hybrid system, Chip-

based techniques and Mass Spectrometry-based methods. Some or all of these

data sources can be leveraged to answer a multitude of biological questions such

as regulation of various cellular mechanisms, interaction between cellular compo-

nents, understanding signalling networks, prediction of cellular phenotypes, etc.

This postgenomic world has seen the birth of Systems Biology. Consequently, bi-

ology has invariably moved away from reductionism; the focus has shifted from

individual molecules and components to the systematic study of organization of

these components into complex networks, which lie at the heart of cellular func-

tions [1]. Depending on the nature of the interacting components, we can have

a variety of networks: protein-protein interaction networks, signalling networks,
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Chapter 1. Introduction

metabolic networks, transcription regulatory networks etc [2]. Amongst these, a

transcription regulatory network or gene regulatory network (as it is most com-

monly referred to) represents a group of genomic sequences (genes or partial genes);

which are engaged in interactions, through intermediary components (proteins and

molecules), to create a spatial and temporal pattern of expression of the involved

genes [3].

The computational vantage point associates the phrase “gene regulatory network”

(GRN) to the web of connections between genes inferred from sequencing data,

such as microarray data [4]. Networks identified by such an approach have appli-

cations ranging from identifying important modules in cellular functions [5, 6, 7]

to study of diseases [7, 8, 9] and drug design [4]. Interest in network inference

task has been increasing exponentially over the years [10]. Thus, a systematic

study of different aspects of the inference task has value in furthering a better

understanding of the advantages and shortcomings of different methods. There

have been extensive studies with regards to the network inference task in general

[10, 11, 12, 13, 14].

However, a principled analysis of approaches that leverage relevant biological infor-

mation in addition to the expression data has been missing. Structural properties

are one source of additional biological information. Gene regulatory networks are

known to have rich topological properties such as modularity [2], scale free degree

distribution [2, 15], hierarchy [2, 16], robustness [2] and existence of motifs [17, 18],

to name some. The network inference task is a high dimensional problem with

a prohibitively large solution space [19]. The available data has low information

content, thus solving the problem without regard to these structural constraints

is bound to give solutions which might not capture one or more crucial proper-

ties of the underlying regulatory networks. Thus, it is of paramount importance

that known structural properties are used to trim the search space and arrive at

solutions that are biologically plausible.

2



1.2 Organization of the Thesis

The present work is motivated by the need for incorporating structural information

in the network inference task. We specifically look at one such property, the

degree distribution of gene regulatory networks. Gene regulatory networks are

known to have scale free degree distribution [2, 15]. In the present work, we offer

a brief review and analysis of some of the methods that try to utilize the degree

distribution as a form of constraint or prior information to guide the search for a

gene regulatory network.

1.2 Organization of the Thesis

The present work has been divided into five chapters in addition to the current

one. Chapter 2 introduces the benchmarking process in general. Specifically, the

networks and datasets used in this work have been described. Finally, different

global and local measures of assessing the performance of network inference tasks

are introduced. Chapter 3 begins by formalizing the task of gene network infer-

ence, followed by a brief overview of the network inference task in general. A

characterization based on the approximation approach used by the network infer-

ence tasks is introduced. The chapter ends with the discussion of the experiments

that we have conducted to study the properties of some of the widely used net-

work inference methods. Chapter 4 introduces two meta-analytic strategies for

combining predictions made by different network inference tasks. The effect of

these strategies is studied using the measures of assessment introduced in Chap-

ter 2. The chapter closes by talking about possible directions for future research.

Chapter 5 gives a brief overview of the state of network inference task with respect

to the use of scale free degree distribution as a source of prior information. Some

of the methods that leverage the scale free prior are discussed. We also introduce

a simulated annealing based method for leveraging an existing framework for in-

ferring scale free networks. Comparative analysis is conducted against two other

scale free prior based methods. A meta strategy for combining the predictions of

introduced simulated annealing method with any other given method is proposed.

3



Chapter 1. Introduction

The introduced meta strategy is analyzed using the networks and performance

measures introduced in Chapter 2. The chapter ends with a discussion of possible

future directions for research. The last chapter talks about the central tenets of

the current thesis and grounds them within the context of the results presented in

the previous chapters. The work of the thesis is briefly summarized. The chapter

closes by ruminating over the place of this thesis within the space of the network

inference research.

1.3 Conclusion

The present thesis is guided towards analyzing the question, “Do structural priors

aid the task of gene network inference?” Consequently, we are also concerned

with studying the specific effects of capitilizing structural priors, especially de-

gree distribution, on the network inference task. Given the absence of systematic

inquiries into these queries, we offer a brief discussion and analysis of some of

the methods which try to incorporate a scale free structure prior in the network

inference pipeline. To this end, we conduct multiple experiments to elicit global

and local behaviours of the degree distribution prior, which have been described

in detail in Chapter 5. As a complementary study, we also do a brief analysis of

some of the currently available network inference methods. Based on the experi-

ments conducted on these methods, we suggest strategies based on meta analysis

to aid the network inference task. These and other experiments are discussed in

the following chapters.
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Chapter 2

Gene Network Inference

Benchmarking

2.1 Introduction

Research in gene regulatory network inference techniques has been doubling every

year [10]. With the wide variety of available methods, there has been growing

interest in benchmarking the performance [10, 11, 12, 13, 14]. Systematic analyses

of global and local properties of some of the methods have been conducted. The

DREAM challenges [10, 11, 12] are at the forefront, utilizing both synthetically

and experimentally generated datasets. Narendra et al. [13] conducted another

comprehensive assessment of the global properties of various methods on four

different assessment metrics. These attempts at characterizing the performance of

different inference methodologies on different data types has generated some useful

insights into the global and local behaviours. For instance, one consistent learning

from the DREAM challenges is that an ensemble aggregate of many methods,

including individually poor performers, is better than any individual method [12].

Previously, the DREAM3 challenge [11] had examined the performance on different

indegree and outdegree edges. Further, motif-level local properties have also been

studied [11, 12]. However, inferences drawn from these studies are contingent on
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Chapter 2. Gene Network Inference Benchmarking

the datasets and the evaluation metrics being employed. Thus, expression data

and evaluation metrics are two crucial components of the benchmarking process.

Employing data sets that faithfully capture the key properties of biologically exist-

ing networks is of paramount importance. Another central player in the assessment

process is the set of evaluation metrics leveraged to assign a quantitative and/or

qualitative measure of performance to extricate the important properties of the

inference methods. In the following sections, we offer brief discussions pertaining

to both components of the benchmarking process within the context of this work.

2.2 Data

The aspired aim of the network inference research is to identify important reg-

ulatory relationships for an organism, given the expression data under a set of

conditions; in turn, detailed experimental interventions can be designed to prod

these predicted regulatory links. If successful, network inference methods would

usher momentous progress in systems biology-based solutions to current problems

such as identifying important modules in cellular functions [5, 6, 7], study of dis-

eases such as cancer [7, 8, 9] and drug design [4]. To be able to faithfully tackle

these tasks, we need to have a clear understanding of the strengths and weaknesses

of different network inference methods; and for this purpose we need networks for

which the true underlying topology of regulatory interactions are known.

The data for the benchmarking process has two components-a matrix of expres-

sion values and the topology of interactions between the genes that generates the

mRNA expression data. Three different sources have been leveraged to generate

benchmark networks [20]-real biological networks constructed from in-vivo studies

and maintained in curated databases [21], synthetic genetic networks constructed

in-vivo in the lab [22] and in-silico artificial networks [10, 11, 12, 13, 14]. Each

6



2.2 Data

of the sources has its strengths and weaknesses. Though networks constructed

from in-vivo experimental studies are representative of the naturally occurring

networks, interactions contained therein are only a subset of all the interactions.

Thus, such networks would be ill-suited for the benchmarking process, since there

would be many false negatives in such a gold standard. In such a scenario, false

positives identified by a given network inference method wouldn’t necessarily im-

ply an error on part of the inference technique, rather these could be potential

novel regulatory interactions [12].

Synthetic genetic networks are usually constructed in a bottom-up approach and

thus have a specific design topology. Therefore, the true underlying interactions

are known. The flip side is that all of the synthetically constructed pathways and

networks have very few genes and interactions compared to naturally occurring

networks. These networks would not capture topological properties, such as the

degree distribution, modularity, distribution of motifs etc., inherent in naturally

occurring networks. Finally, artificial networks based on different network models

are a good alternative; the true topology is known and thus inferences about

structural performances of a given method would be accurate. Further, these

networks could be easily sampled from experimentally constructed networks so as

to be representative of biological networks [20].

However, in terms of the expression data, the first two sources offer data that is

of practical interest, since it is generated by the biological machinery of transcrip-

tion and translation and other associated processes. Whereas in-silico expression

data is generated using simplistic models of transcription and translation. Also,

such models are only an approximation of the actual process of protein expres-

sion and inherently lack many complex processes found in the natural world such

as post-transcriptional and post-translation changes, biological noise, etc. The

in-vivo measured data is also riddled with issues. Generally, only a limited num-

ber of samples are available from a single experiment conducted under specific

experimental conditions; thus data can be augmented by stacking together mea-

surements from different experiments performed in the same and/or different labs

7



Chapter 2. Gene Network Inference Benchmarking

[12]. Though such augmentation increases the number of available sample points,

however the noise in the data might increase.

Despite the aforementioned shortcomings, both experimentally collected and ar-

tifically simulated networks and expression data have been used for the purpose

of benchmarking [10, 11, 12, 13, 14] to leverage the complementarity of these

sources. Therefore, we also employ both sources of data in this work as well. De-

tails pertaining to the network topologies and the corresponding expression data

are explained in the following sections.

2.2.1 Network Topologies

Biological networks are known to be sparse random graphs with heavy-tailed de-

gree distributions [2]. Contrary to simple random networks, gene regulatory net-

works have a scale-free degree distribution for the regulatory edges emanating from

the genes [15]. This can be represented as shown in Eq 2.1.

Pout(kout) ∝ k−γoutout (2.1)

where, P is the probability of having nodes with outdegree kout and γout is the

exponent which usually assumes a value between 2 and 3. However, the indegree

distribution can be represented as a limited exponential distribution [15] which

might have the form given in Eq 2.2.

Pin(kin) ∝ exp(−λin.kin) (2.2)

where, P is the probability of having nodes with indegree kin and λin is the rate

parameter of the distribution. The asymmetry between the indegree and outde-

gree distributions could be explained by the fact that genes are more likely to be

regulating large number of genes than being regulated by many genes. Biologi-

cally, this amounts to the physical limitation on the available promoter sites on a

gene.

8



2.2 Data

Given these constraints, we have experimented with three different types of net-

work categories, which together contain 25 medium size networks and 3 large-scale

networks. These network categories are: Power law Indegree and Power law Outde-

gree (PIPO); Networks from DREAM Challenges; Exponential Indegree and Power

law Outdegree (EIPO) with and without Modularity. The topological properties

of these networks are described as follows.

1. Power Law Indegree Power Law Outdegree (PIPO) - This category

consists of five networks of 100 genes each. The networks were created using

the algorithm proposed in [23]. Both indegree and outdegree distributions

are independently sampled from a scale-free distribution. The degree dis-

tributions are adjusted to ensure that they represent a graph; the sum of

indegrees and outdegrees over all of the nodes are ensured to be equal. Fi-

nally, the edges are assigned to the nodes using a directed configuration

model. The degree exponent for both indegree and outdegree distributions

is set to a value of 2.5. Self-regulatory interactions were removed from the

network. While generating expression data, it was assumed that 40 % of

the edges in the network have a negative regulatory effect, while the rest

had a positive regulatory effect. Fig. 2.1 shows the plot for the indegree and

outdegree distributions for some of the networks used in this work.

2. DREAM Synthetic - Synthetic networks generated using random graph

models such as Erdos Renyi, Strogatz-Watts or Barabasi-Albert don’t neces-

sarily capture all the structural properties of gene regulatory networks [20].

Thus, the networks for the DREAM challenges have been generated by ex-

tracting modules from known regulatory networks of E. coli and S.cerevisiae

[20]. DREAM3 had five synthetic networks of size 100 in the network infer-

ence challenge [11]. Two networks are from E. coli and 3 from S.cerevisiae.

DREAM4 had two different sub-challenges in the size 100 category-one sub-

challenge had data from knockout, knockdown and timeseries experiments,

while the other provided multifactorial perturbation steady state data. In

this work, we have used the latter for evaluating the performance of the

9



Chapter 2. Gene Network Inference Benchmarking

Fig. 2.1. Degree distriution for the size 100 networks.

The indegree and outdegree distributions have been presented for one network from
each of the following topologies. 1:PIPO, 2:DREAM4, 3:DREAM3, 4:EIPO, 5:EIPO
Modular. PIPO has scale free in and out degrees, thus both are symmetric. However, for
all the other topologies indegree is exponential or roughly exponential and the outdegree
is scale free. The asymmetry in degree distributions is visible for these topologies.

network inference approaches. Since multifactorial perturbation data was

not provided for DREAM3, we generated steady-state multifactorial pertur-

bation expression data using the tool GeneNetWeaver [20]. This tool has

been provided by the organizers of the DREAM challenges and was used to

generate data for the actual DREAM challenges.

We have also utilized two of the four DREAM5 networks. One of the

networks is an artificial in-silico network extracted from the known topol-

ogy of E.coli transcriptional regulatory network from RegulonDB [21] with

an addition of 10 % random edges; expression data was simulated using

GeneNetWeaver. The other network is a real biological network from E.coli.

The gold standard for E.coli was created using the experimentally validated

interactions available from the curated Database RegulonDB.

10



2.2 Data

3. Exponential Indegree Power Law Outdegree (EIPO) - This category

contains five networks of 100 nodes each. The networks were generated using

the MATLAB based software tool SysGenSim [24]. Each network is gener-

ated to have exponential indegree, with rate parameter 0.5, and power law

outdegree distributions following the scale-free property with an exponent of

2.1. Another set of five networks was generated with the same degree distri-

butions and an additional property of modularity, with 5 modules, enforced

on the created networks.

2.2.2 Expression Data

Expression data for all the in-silico networks has been generated using the tool

GeneNetWeaver [20]. The network topologies are laden with a dynamical model of

gene regulation, which accounts for both transcription and translation. The model

incorporates the dynamics of both mRNA and protein concentrations. For a given

network, the nodes constitute the genes. Thus, the mRNA level for a gene is

controlled by the proteins expressed by its regulator genes. The entire regulatory

web of interactions is encoded into a system of differential equations. Further

details for the model can be found in [11]. To account for the inherently stochastic

nature of molecular reactions, the noise in mRNA and protein concentrations is

estimated using chemical Langevin equations. Measurement noise is also added to

the generated data.

GeneNetWeaver is capable of generating different types of gene expression datasets

incluing steady state and timeseries, which may include expression values for wild-

type, knockout, knockdown, dual knockouts and multifactorial perturbation ex-

periments. The details of these experiments are available in [11, 20]. For the

25 medium size networks we focus on steady state multifactorial perturbation

data. In real biological systems, where the number of genes and gene products

are quite large, multifactorial perturbation data is economical and more readily

11
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available [25]. Single gene perturbation experiments such as single gene knockouts

or knockdowns cannot provide faithful information regarding the combinatorial

web of interactions on the level of a gene network [25]. Single-gene perturbations

are carried out within the context of a fixed background. However, perturbing

the system against one background does not offer information regrading the other

backgrounds against which a single gene could be altered.

In light of this, multifactorial perturbation data, where the genes are present in a

combination of different contexts, such as different gene mutants and/or varying

environmental or experimental conditions is quite useful. The DREAM4 challenge

consisted of a size 100 multifactorial perturbation sub-challenge; we have used

this data for the DREAM4 networks. Expression data for all the other networks,

including DREAM3, has been generated by means of GeneNetWeaver by setting

the simulation conditions similar to those used for the DREAM4 challenge. For

each network, hundred multifactorial simulations are done. Thus, for each network,

the expression data is a matrix X ∈ Rn×p with n = 100 and p = 100, where n and

p are the number of experiments and the number of genes respectively.

The in-silico network in DREAM5 has also been simulated using GeneNetWeaver

[12]. Expression data for E.coli was extracted from the gene expression data from

the Gene Expression Omnibus (GEO) database [26]. In contrast to DREAM3 and

DREAM4 challenges, DREAM5 provided a putative list of transcription factors

and details about the experimental conditions for the microarray chips used for

compiling the expression data (for instance, the perturbation introduced, target of

a gene knockout, or the time point for a time-series experiment). The experimental

conditions for the in-silico network was simulated so as to mimic the chip details

for E.coli.
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2.3 Evaluation Metrics

The second important component of the benchmarking process is assessment. We

need metrics that can accurately capture the performance of the inference meth-

ods. In this work, we know the true edges that exist in the network and predictions

from different methods are compared against this known network. Thus, many

common metrics from binary classification problems have been leveraged for char-

acterizing the performance of network inference methods such as area under the

Precision Recall curve, area under the ROC curve, precision, recall, F-score, Pos-

itive Predictive Value (PPV), Negative Predictive Value (NPV), etc and various

combinations of these metrics, [10, 11, 12, 13, 14]. These metrics identify any

given method’s capacity to separate edges or interactions between genes from the

non-edges or non-interactions using the gene expression data. In addition to such

global metrics, tailor-made metrics have been used to prod the local properties

of the network inference methods; for instance, [11] constructs a metric to assess

the behaviour of inference techniques on edges incident on genes with different

indegrees and outdegress. This metric is based on normalized confidence values

assigned by a method to the interactions between the genes in a given network.

In the same study, confidence value-based metric is also utilized to characterize

the performance of inference methods in identifying different three node motifs in

the network. Both global and local metrics taken together afford a clear picture

of the strengths and weaknesses of any given network inference technique.

In the present work, we adopt several global and local metrics to characterize the

different properties of the network inference methods. We briefly discuss these

metrics in the following sections.

2.3.1 Global Assessment

To gauge an unbiased estimate of the performance, we use metrics that assess

performance across all recall values. For this explicit purpose, the following metrics
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Chapter 2. Gene Network Inference Benchmarking

have been used.

• Precision Recall (PR) Curve

• Receiver Operator Characteristics (ROC) Curve

• Area under the PR Curve (AUPR)

• Area under the ROC Curve (AUROC)

• Score - This metric has been consistently used in the DREAM challenges

[10, 11, 12]. It compares the performance of a given method against a null

model obtained by assigning random confidence values (uniformly sampled

between 0 and 1) to all possible interactions. The aggregate score is based on

p-value calculation using a given number of random network predictions for

each network in every dataset [10, 11, 12]. For DREAM4 networks, we use

the null distribution provided by the organizers. For the other 20 networks,

we use 30,000 random network predictions for each network to obtain the

null distribution for AUPR and AUROC values. Under this null hypothesis

p-values are computed for a given network inference method, which quantify

the probability of having the same or better performance, in terms of AUPR

and AUROC values, than the inference method under the null hypothesis.

It is assumed that both AUPR and AUROC values are independent, thus

only marginal distributions are used. The p-values can be converted into a

score as follows;

ScoreAUPRi = −log10(pAUPRi) (2.3)

ScoreAUROCi = −log10(pAUROCi) (2.4)

where subscript i is for the ith network. If there are N networks, composite

scores can be computed by taking the geometric mean of the corresponding
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p-values and then computing the scores.

p̂AUPR =

( N∏
i=1

piAUPR

)1/N

(2.5)

p̂AUROC =

( N∏
i=1

piAUROC

)1/N

(2.6)

Similarly, overall Scores can be computed for individual networks or a group

of networks by taking the geometric means of individual p-values (piAUPR

and piAUROC , i ∈ {1, 2, . . . , N}) or the geometric means of composite p-

values (p̂AUPR and p̂AUROC) and then computing the Scores.

• Causal Inference - Even with steady state perturbation data many meth-

ods infer asymmetric adjacency matrices. To assess the extent of causal

information contained in an asymmetric prediction we use the plot of accu-

racy versus threshold as used in [27]. The adjacency matrix is thresholded by

removing all the entries below a given threshold. For the remaining non-zero

entries, if an asymmetric prediction is present (asymmetric predictions are

those for which entry in the ith row and the jth column is non-zero while

that in the jth row and the ith column is not), we measure how accurately

the direction of causation is captured by the thresholded matrix. If T repre-

sents the total number of asymmetric interactions in the predicted adjacency

matrix at a given threshold where gene i regulates gene j and not vice-versa,

and of these T interactions, Pred is the number of interactions which are

also present in the gold network, accuracy is given by Pred
T

. Varying the

threshold over the entire possible range gives us a curve, and the area under

the curve quantifies the extent of causal information captured by a given

method.
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2.3.2 Local Assessment

The most common local features of a graph are its degree distribution and motifs.

GRNs are known to have heavy-tailed degree distributions, such as power-law,

which suggests that only a few genes play the role of major regulators. Further,

the power-law nature might suggest that these networks are robust to external

perturbations. Another important property of GRNs is the existence of highly

over-represented motif structures [17, 18], which have important sensory and de-

velopmental functions in a cell [28]. Thus, it is important for a good network

inference methods to faithfully identify these properties of a GRN. We use differ-

ent local measures of performance for assessing the impact of different methods

on recovering these properties of a given gold standard network.

• PR and ROC Curves for Indegree (Outdegree) - A given network

is broken down into mutually exclusive and exhaustive sets of nodes and

corresponding incoming (outgoing) edges where each set contains nodes of a

specified indegree (outdegree). Precision Recall curves can then be obtained

for each of these sets independently. For instance, the edge set E can be

divided in subsets Eu, u ∈ {1, 2, . . . , d} where set Eu contains all the edges

incident (emanating) on (from) genes with indegree (outdegree) u and d is

the maximum indegree (outdegree) in the GRN. For each subset, we can

characterize the ability of a given method to identify the edges of indegree

(outegree) u from the non-edges using Precision-Recall and ROC curves.

• AUPR Indegree (Outdegree)

• AUROC Indegree (Outdegree)

• Degree Score (dScore) - Similar to the Score defined for the AUPR and

AUROC values for the entire edge set, a score value can also be calculated for

the AUPR and AUROC values for a subset Eu with edges incident on (ema-

nating from) indegree (outdegree) u nodes. For a given indegree (outdegree)

u, we have calculated the null distribution by generating 10,000 random pre-

dictions. Corresponding p-values and the scores can be calculated for each
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network and entire ensemble as discussed above. The dScore is calculated

independently for indegree and outdegree edges. We observe in Chapter 3

that the performance for all the methods decreases exponential with indegree

and linearly with outdegree.

Thus, to appropriately characterize these trends, we fit a straight line to the

log transformed dScore for indegree against the indegree, and fit a straight

line to the dScore values for outdegree against the outdegree. Corresponding

to these straight line fits, we figure out the intercept and slope values; these

characterize the behaviour for the degree distributions. Higher the intercept

and lower the slope the better an inference method is able to capture the

degree distribution of the underlying network. Intercept quantifies the per-

formance over indegree or outdegree 1 edges, while the slope characterizes

the decline in performance with indegree or outdegree.

For the purpose of comparing any two inference methods, we can calculate

the degree at which the straight line fits for both the methods would cross

each other. Assume that M1 and M2 are two methods with slopes s1 and

s2 and intercepts I1 and I2 respectively. Further assume that dcross is the

degree at which they cross. If dcross < 0 and I1 > I2, it implies that M1

lies above (dominates) M2 in the dScore vs degree plot. If dcross > 0 and

I1 > I2, then dcross quantifies the positive degree up to which M1 dominates

M2. If dcross < 0 and I1 < I2, then M2 always dominates M1. And finally, if

dcross > 0 and I1 < I2, then M1 dominates M2 after degree dcross.

• Degree Separation (dSeparation) - The dScore only quantifies the abil-

ity of a network inference method to identify the edges of different indegree

or outdegree. To assess the competence of a method to capture the com-

binatorial nature of regulation, we need to look at the difference in the

prediction confidences assigned to the edges incident on or emanating from

a given gene. Consider again the subsets Eu, u ∈ {1, 2, . . . , d}, where set

Eu contains all the edges incident on genes with indegree (outdegree) u. For
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indegree (outdegree) u, we identify all the genes in the subset Eu and calcu-

late the dSeparation as given in Eqs 2.7 and 2.8 for indegree and outdegree

edges respectively.

dSeparation =

∑
i<i′∈Eu∗j

wij − wi′j
(u− 1)pu

(2.7)

dSeparation =

∑
j<j′∈Eui∗

wij − wij′
(u− 1)pu

(2.8)

where Eu
∗j is the set of genes regulating gene j, Eu

i∗ the set of genes being

regulated by gene i, wij is the prediction confidence assigned to the edge from

gene i to gene j by a given method and pu is the number of genes in Eu. For

each gene in Eu, all the edges incident on (emanating from) it are arranged

in decreasing order by the prediction confidence and then dSeparation is

calculated as given in Eqs 2.7 and 2.8. The obtained dSeparation values

can be converted to a score similar to the score for AUPR and AUROC

values by comparing against a null model. The null model distribution is

obtained by randomly assigning confidence values to edges in the subset Eu

and the process is repeated 10,000 times. A p-value is calculated as the

probability of observing a dSeparation smaller than or equal to the observed

dSeparation for a given method. The log-transformed p-value is finally used

as a dSeparation score. Larger the dSeparation score the closer the edges

incident upon or emanating from a gene with a given indegree or outdegree

are. Aggregate scores can be computed as discussed before for AUPR and

AUROC.

• Motif Bias - Evaluation of performance on three-node network motifs has

been conducted in the DREAM challenges before [11, 12]. Here, we assess

the performance on the same three-node motifs as used in the DREAM

challenge. These motifs are Cascade, Fan-in, Fan-out and Feed Forward

Loop (FFL). The motif topologies are shown in Fig. 2.2. The motif edges

are assessed in terms of bias in AUROC against the global performance. For
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each motif, the motif edges are compared against the non-edges to obtain an

AUROC value and this AUROC value is compared with the AUROC value

for the whole network. This quantifies to what extent a given method is able

to identify a particular network motif. The motif errors for Cascade, Fan-in

and Fan-out motifs, i.e., the edges not present in the motifs but predicted by

a given method, are quantified by comparing the errors against all the non-

edges. The motif error edges are assumed as the positive case and the set of

all the non-edges as the negative case and an ROC curve can be obtained.

This curve can be compared against that for a random prediction.

Fig. 2.2. Motif Topologies.

The topologies for four, three node motifs have been presented here. We have used the
following motifs: Cascade, Fan in, Fan out and Feed Forward Loop (FFL).

2.4 Conclusion

We have introduced a total of 11 metrics for assessing the performance of network

inference methods. Five of these metrics aim at eliciting the global behaviour of
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network inference approaches. While six local metrics analyze the behaviour over

local properties such as specific indegree or outdegree edges and performance on

motif structures. The metrics introduced for studying the behaviour of any given

method on indegree and outdegree edges is novel. We have extended the score

metric used regularly in the DREAM challenges [10, 11, 12] for edges of a given

indegree and outdegree.

Additionally, we have constructed the metric dSeparation to assess the degree of

closeness between the edges of a given indegree or outdegree, that are incident

upon or emanating from a given gene respectively. The introduced metrics are not

specific to this study, and can be adapted for any exploration of network inference

methods. We use these metrics in the following chapters to analyze the properties

of different network inference methods.
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Chapter 3

Gene Network Inference

Methods: Introduction and

Analysis

3.1 Introduction

3.1.1 Problem Formulation

As discussed in Chapter 2, GRN inference can be defined as a problem to infer the

interaction pattern for a group of genes from a given expression data. The source

of the data is high-throughput experiments, such as microarray, RNA-sequencing.

Though the inference techniques can be applied to data from different sources,

here we assume that the source of the data is steady state microarray experiments.

Consequently, data is in the form of a matrix, X ∈ Rn×p , where columns represent

genes and the rows represent different conditions(experiments) and/or time points

under which the mRNA (gene expression) levels were measured for all the genes.

Thus, given matrix X, the task is to find an interaction pattern for the group of

genes: for each gene, we need to find a list of genes that are potential regulators
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Chapter 3. Gene Network Inference Methods: Introduction and Analysis

(activators/repressors), which together determine the expression levels for that

gene1.

In light of the aforementioned discussion, a GRN can formulated as a directed

graph G = (V, E ). The vertex set V = {1, 2, ..., p} contains p nodes, which

correspond to the genes. Consequently, the edge set E consists of ordered pairs of

nodes {i, j} which represent the interaction pattern for the GRN. For instance, an

edge directed from node i to j accounts for the regulatory effect of gene i on gene

j. The nature of the regulatory relationship, whether activating or repressing, is

inconsequential within the context of this work, thus has been disregarded.

Generally, the retrieved interaction pattern is a weighted adjacency matrix W ∈

Rp×p, where the elements of the matrix correspond to the predicted confidence or

strength in the corresponding edge in the network. The interaction pattern I ∈

Rp×p can then be obtained from W after appropriately dropping all the elements

below a specified threshold; the present work is not concerned with the selection

of this threshold. To get from X to W an association metric is desired to ascribe

prediction confidences to the edges in the network.

Without apriori assumptions, the regulation of any gene in the network would be

a function of the other genes, which could be represented in the form of a coupled

system of equations as given in Eq 2.1 2.

xj = gj(x1, x2, ..., xj−1, xj+1, ..., xp) (3.1)

where, xj, j ∈ {1, 2,. . . , p} is the j th column of the expression matrix X. The

function g : Rn×p-1 → Rn characterizes the regulatory mechanism for the network.

Given the form for g, the inference task consists of estimating the parameters of

g and obtaining the weight matrix W. Assume that Wij represents the predicted

confidence or strength in the regulatory relationship from gene i to gene j, then

1The implicit assumption is that the group of genes also contains the genes that express the
transcription factors.

2Here we assume that auto-regulatory effects are not present.
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Wij can be estimated from Eq 2.2.

Wij = fij(g, xi, xj), i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , p}, i 6= j (3.2)

where g represents a vector of functions which characterizes the gene behaviour.

Varying degrees of assumptions can be made about the form for g. The nature

and the severity of the assumptions defines a trade-off between faithfully capturing

the complex structure and the feasibility of a solution. The network inference task

is inherently high dimensional; large number of networks are possible and only

limited data points are available. This makes the problem under-determined and

appropriate assumptions need to be made to find a solution. Depending on the

assumptions adopted, the network inference process could be divided into three

categories: Pairwise (PW), GeneWise Decoupled (GWD) and Full Conditional

Distribution (FCD). Under PW, methods only consider pairwise dependencies

between all gene pairs in the network while neglecting the influence of other genes.

GWD methods, take each gene independently, and consider the joint effect of the

rest of the genes on the selected gene. Finally, FCD methods look at the full

conditional distribution structure for all the genes together in a multivariate sense.

There are other ways to categorize network inference methods, such as based on

the underlying methodology applied by a method [12] or structural priors being

employed. Naturally, there would be overlaps between the classes of different cat-

egorization. For instance, the class of degree distributions under structural priors

would fall in GWD and FCD categories. Pairwise methods consider association

between two genes at a time and thus cannot capture the degree distribution prop-

erty as prior. However, pairwise methods can be augmented with post-processing

methods for incorporating structural properties[29, 30]. In this chapter, we discuss

network inference methods under the ambit of PW-GWD-FCD categorization.
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3.2 Gene Network Inference Methods: Charac-

terization and Literature Survey

As previously dicussed, the methods for network inference are diverse and different

categorization techniques could be used to characterize them. Here we adopt the

PW-GWD-FCD characterization introduced in the previous section.

• Pairwise (PW) - PW methods assume that pairwise gene interactions are

independent of the other genes in the network. Consequently, Eq 2.1 is

decomposed into p(p-1) independent equations as shown in Eq 3.3.

xj = gij(xi), i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , p}, i 6= j (3.3)

Mutual information (MI ) and correlation (Corr) are the most popular pair-

wise metrics [10, 11, 12, 13, 14, 31, 32, 33, 34, 35, 36], which work within the

framework of a relevance network approach [32, 33]. These methods forego

the estimation of Eq 3.3 and directly calculate the extent of dependence

between two genes, and give the elements of matrix W . The most lucra-

tive properties of these two methods is low computational demand and easy

scalability. Correlation between each pair of genes can be easily calculated

using a variety of measures of correlation [37]. Mutual information requires

discretiation of the data to estimate the joint and marginal distributions.

Thus, calculation of mutual information is a little trickier than correlation,

however mutual information has proven to be better at the network inference

task as shown in [12] and Section 3.3.

Despite these advantages, such pairwise methods are of limited applicability.

The inferred network is essentially a co-expression network rather than a

transcriptional regulatory network [19], since edge confidences are assigned

by the “guilt by association” principle. Thus, genes with similar expression

patterns would be assigned a high probability of being connected. The in-

ferred network is sparse with large number of false positives. Correlation and
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mutual information inferred networks are strongly affected by the cascade

error [12]. Thus, unaided correlation and mutual information metrics are of

limited application.

Many post-processing techniques specific to MI and Corr have been devised

to deal with the menace of false positives. ARACNe [35], CLR [34] and

MRNET [36] are some of the most widely implemented procedures to tackle

false positives. Each of the methods uses a different strategy to impose

a similar structural constraint, sparsity. ARACNe looks at each triplet of

genes in the network, and removes the weakest link using a threshold called

the data processing inequality (DPI). This is tantamount to reducing the

cascade errors by removing the weak feed forward loop (FFL) edges. The

strategy has biological appeal, since it is known that biological networks

have more cascade type motifs than FFLs. CLR proceeds by constructing a

background null distribution for each edge in the network. Two background

distributions are constructed, one for the regulator and other for the target

gene. Z-scores obtained from each distribution are thresholded at zero and

then combined to give a modified z-score to be used as the strength of the

edge. MRNET uses the maximum relvance minimum redundancy (mrmr)

feature selection principle to select potential regulators for each gene; thus,

attempting to remove all the redundant edges in the network. In this work,

we found that ARACNe, CLR and MRNET all reduce the cascade error

to varying degrees in different synthetically generated datasets as shown in

Section 3.3.

Network deconvolution [30] is another method that tries to remove indirect

edges from the correlation matrix using matrix inversion. Network deconvo-

lution is generally applicable to a large number of methods.

In addition to sparsity, methods have tried to impose higher order structural

properties. WGCNA is one such method [29]. It tries to use a threshold-

ing principle to impose scale-free structure on the inferred network. The
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threhsold is selected such that the inferred network is approximately scale-

free. This method has been discussed in detail in Section 4.2.

Netter [38] is another post-processing method aimed at incoporating desired

structural properties in any method. Given a prediction list, Netter re-ranks

the edges in the list using a simulated-annealing approach so as to maximize

an objective function. The objective function can be customized to include

desired structural properties such as graphlet based penalty or limiting the

number of regulator genes.

Pinna et al. [39] introduced yet another way of post processing a network

inference prediction using structural properties, in this case downranking

spurious FFL indirect edges. The method however has been demonstrated

for the case of knockout data. For each edge ij from gene i to j in the

network, a z-score is computed by comparing the expression of gene j in the

knockout strain of gene i against the background distribution of all other

strains. A thresholded network is constructed and the indirect edges be-

longing to FFLs in the condensation graph of the thresholded network are

downranked in the final prediction. In this study, we have made a crude

attempt at leveraging a similar post-processing ideology, Section 5.5.

Hybrid methods based on combining two different pairwise metrics have also

been constructed. RegCorr [40] is one such method, which combines pairwise

regression with correlation coefficient to achieve performance comparable to

the state of the art method Genie3 [41] on the DREAM4 multifactorial

perturbation challenge. A regression based score for edge ij from gene i

to gene j is calculated by first regressing gene j on gene i and then using

a function of the sum squared residuals for the score. The final prediction

matrix is obtained by entrywise product of the correlation matrix and the

regression score matrix. The hybrid methodology of this method has inspired

the strategy 1 discussed in Section 4.2.
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The simple pairwise methods such as Corr, MI and most associated methods

have been suggested to be used as a filter for newly proposed mutlivariate

methods [13]. These methods cannnot capture combinatorial regulation and

other higher-order structural properties inherent in true gene regulatory net-

works [19]. However, some pairwise methods have performed exceptionally

well on large scale biological datasets [42]. Küffner et al. [42] used η2, which

is a non-linear measure of correlation and computed using ANOVA. Two-

way anova is used to assess local dependencies between transcription factor

and target gene pairs. The method was the best performer on the E.coli

dataset in the DREAM5 network inference challenge. One crucial factor for

the success of this method is the availability of supplemental information

regarding the expermental conditions under which the data was collected.

• GeneWise Decoupling - Methods under this category, decompose the

network inference task into p independent tasks. Thus, Eq 2.1 is considered

independently for each gene and not as a coupled system. The final network

is constructed from the models for each individual genes. l1 regularized re-

gression has been extensively used within this category. TIGRESS [43] is

one of the state of the art methods in this category, which combines l1 regu-

larization with stability selection. It has been observed that l1 base methods

tend to perform better with some kind of resampling technique [12]. This

also resonates with the observation that the performance of any given infer-

ence method depends strongly on the specific implementation rather than

the general methodology. TIGRESS splits the data into roughly equal sized

two samples and infers binary network for each half by using l1 regulariza-

tion on each gene independently. This process is repeated a large number

of times to generate a frequency matrix that can be normalized to obtain a

weighted adjacency matrix.

Inferelator is another method that leverages l1 based regularization, [44].

Inferelator uses a decoupled dynamical model as an approximation to a cou-

pled system of ordinary differential equations to model the system dynamics.

27



Chapter 3. Gene Network Inference Methods: Introduction and Analysis

The derivatives are estimated by finite differences and an l1 regularized lin-

ear regression formulation is used to estimate the network topology. One

interesting aspect of [44] is the introduction of a second order interaction

term for transcription factors which helps capture combinatorial regulation.

This structural constraint has been discussed in Section 4.3, where it has

been leveraged to capture interaction between transcription factors for com-

binatorial regulation in the context of a simulated annealing based method

that we introduce.

Apart from l1 regularized regression models, some novel methodologies have

been developed such as Genie3 [41] which uses random forests. Genie3 uses

an ensemble of tree based regression to compute the strength of regulation

by potential transcription factors. Such models are created for each gene

independently. Genie3 is one of the state of the art methods which was the

best performer on the DREAM4 multifactorial steady state data and the

DREAM5 in-silico network.

• Full Conditional Distribution (FCD) - Methods which model the joint

distribution of all the genes in a gene regulatory network fall in this category.

Graphical methods such as bayesian networks, gaussian graphical models

(GGM) and dyanmic bayesian networks belong to this class of methods.

Bayesian networks have been used extensively for the gene network infer-

ence task [45, 46, 47, 48, 49]; six out of the 29 participants in the DREAM5

challenge used bayesian networks. However, bayesian networks have not per-

formed well compared to some of the other computationally less demanding

methods [12]. Exponential search space and limited data drive the optimiza-

tion towards sub-optimal solutions. Model reduction techniques have been

proposed [47] to reduce the size of the search space. Recently, methods are

beginning to leverage topological properties of gene regulatory networks to

reduce the size of the search space and infer biological relevant networks such

as [50], which imposes a scale-free structural prior for the inference task.
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Many GGM based methods have been proposed to infer gene regulatory

network as well. l1 based regularization can be leveraged for covariance es-

timation to infer gene regulatory networks [51, 52, 53]. Many GGM based

methods have rather employed biologically inspired priors such as the de-

gree distribution of gene regulatory networks [54, 55, 56] as the constraint

in covariance estimation. Methods such as [57] adopt the scale free degree

distribution prior and conducts model selection by sampling from the poste-

rior using markov chain monte carlo (MCMC) sampling methods. Some of

these methods will be discussed in detail in Chapter 5 where we talk about

the task of incorporating knowledge about the degree distribution of gene

regulatory netwokrs in the inference task. Specifically, we will elaborate and

use two such methods, Sheridan [57] and GLASSO sfprior [54]. The for-

mer will be called Sheridan sfprior henceforth when used with a scale free

prior, and Sheridan rndprior when used with a binomial prior on the degree

distribution.

The inherent capability of graphical methods to incorporate structural in-

formation as prior information is quite lucrative. Finding efficient ways to

incoporate structural properties of gene regulatory networks such as the scale

free degree distribution of gene regulatory networks might offer consequential

gains for the network inference task.

3.3 Results

We conducted experiments with 17 widely used network inference methods belong-

ing to the six methodological categories defined in [12]. To extricate the strengths

and shortcomings of these methods, we evaluated the performances on local and

global measures introduced in Chapter 2. All 17 methods were used to infer net-

works for the 25, size 100 networks described in Chapter 2 and performance was

characterized using the metrics introduced in Chapter 2. The results of various

experiments that were conducted are described next.

29



Chapter 3. Gene Network Inference Methods: Introduction and Analysis

• Global assessment - Fig. 3.1 shows the aggregate performance of the meth-

ods. An interesting observation is that RegCorr which looks at pairwise as-

sociations is comparable or better than two of the state of the art methods

Genie3 and TIGRESS. With MI in place of correlaion in RegCorr leads to

an improvement in performance; the modified method will be referred to a

RegMI. Though the performances of both Genie3 and TIGRESS are vari-

able with respect to the parameters, RegCorr and RegMI are comparable

to these methods. In contrast to the pairwise RegCorr and RegMI, these

methods employ more sophisticated approaches.

Fig. 3.1. Average overall score for method comparison.

The overall score averaged over all the netwrks. There are a total of 17 methods divided
into six groups depending upon the methodology used by these methods for network
inference. An additional method called Reg has been included for comparison purposes.
The method is an implementation of the regression part in RegCorr.

In accordance with intuition, methods which aim to idenitfy directed net-

works generally have better performances compared to those that don’t.

RegMI, RegCorr, Genie3 and TIGRESS all infer a directed network. Conse-

quently, all of these methods rank at the top of the list. The extent of causal
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information is shown in Fig. 3.2; these methods carry statistically significant

causal information.

Fig. 3.2. Causal Accuracy vs Threshold for the class of directed methods.

Causal accuracy has been plotted against the threhsold. The plots were generated by
thresholding normalized prediction matrices at different values of the threshold. For each
threhsold, the accuracy of predicting the direction of causality for asymmetric edges is
measured for the obatined thresholded network. The solid horizontal line at accuracy
0.5 represents random guessing. The region between the two dotted curves above and
below the solid line represents 95% confidence bound; curves in this region would have
causal information statistically indistinguishable from the case of random guessing.

However, Lasso, application of simple l1 regularization for network inference,

performs poorer compared to most of the undirected methods. This contra-

diction could be explained by the fact that the performance of inference

methods is strongly affected by the particular implementation of a general

methodology [12]. For instance, both Lasso and TIGRESS perform l1 reg-

ularized linear regression, yet the latter is a state of the art method while

Lasso performs quite poor. The performance of such regularization meth-

ods is quite dependent on the type of resampling technique being employed;

TIGRESS uses stability selection based resampling while Lasso uses none.
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Moreover, it is evident from Fig. 3.2 that Lasso is indistinguishable from the

case of random guessing when it comes to inferring directionality.

Variation among methods is also evident for graphical methods, where GLASSO

sfprior and Sheridan sfprior both use the GGM framework for network in-

ference, yet Sheridan sfprior has almost two times the score compared to

GLASSO sfprior in Fig. 3.1. This could be due to the fact that Sheridan

sfprior uses a well defined prior on the degree distribution of models com-

pared to GLASSO sfprior. This point has been discussed in Chapter 6. This

further supports the claim that performance is highly dependent on specific

implementations.

Notably, Sheridan sfprior performs the best among all the undirected meth-

ods. The incorporation of a well defined prior on the degree distribution gives

this method edge. We shall see in Chapters 4 and 5 that when combined

in a meta-analytic framework, Sheridan sfprior is one of the top performing

methods. It is worthwhile to note that Sheridan sfprior performs better than

Sheridan rndprior, which is an implementation of the method described in

[57] with a binomial prior on the degree distribution in contrast to a scale free

distribution. The difference between these two implementations is further

explored in Chapter 6.

One of the key learnings from the DREAM challenges has been that combin-

ing multiple methods might lead to a synergistic effect in performance [12].

To explicate such an effect of meta-analysis for RegCorr and RegMI we have

included in Fig. 3.1 another method called Reg. This is a method obtained

by using the regression part of RegCorr in isolation. We see that Reg is

the worst performer within the setting of our study. However, combination

of Reg with other low performing methods, Corr and MI, leads to methods

which are the top performers. We leverage this insight in Chapter 4 to design

a meta-analytic strategy for augmenting the network inference task.
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We had mentioned in Section 3.2 that MI performs better than Corr, and

this is now evident in Fig. 3.1. MI based methods also perform better than

corresponding Corr based methods. CLR performs better than MRNET,

which performs better than ARACNe.

Score, though a good indicator of the overall performance, does not allow

inference about the properties of different methods across the entire range of

recall. Thus, we refer to Fig. 3.3 for the average precision recall curve over

DREAM4 networks. We see that RegMI lies above all the others. Followed

by RegCorr and TIGRESS. Interestingly, Genie3 lies below TIGRESS for

mid and high recall values. However, for small recall values, Genie3 has

the best performance, evident by its dominating curve in the top left corner.

This implies Genie3 offers biologically most relevant preditions compared

to the other methods. We also observe that the undirected methods do

not begin at high precision values. This is due to the undirected nature of

these methods. Specifically, for Sheridan rndprior and Sheridan sfprior the

curves are low and flat at very low recall values. The flatness is due to the

fact that a large number of the top edges in their predictions have the same

confidence. This issue has been raised again and discused in more detail in

Chapters 4 and 5. The synergistic effect inherent in RegCorr and RegMI is

quite visible in Fig. 3.2. While Reg is at the bottom, RegCorr and RegMI

are at the top among all the curves. Corr and MI lie in between.

• Comparative analysis on indegree/outdegree edges - To assess the

performance of different methods on edges of varying indegrees or outdegrees,

we look at the plots for the dScore with different indegrees and outdegrees

edges in Fig. 3.4. We find that the performance on indegree edges decreases

exponentially. This is in contrast to the study conducted after DREAM3

challenge [11], where the performance was found to decrease linearly. How-

ever, a different performance metric was employed there to quantify the

performance on indegree edges. The particular metric used there, is a bi-

ased estimator of the performance, since it assumes that the median of the
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Fig. 3.3. Precision Recall Curve for method comparison.

Precision recall curves for all the methods averaged over the five networks in the
DREAM4 challenge.

normalized edge weights for a given indegree is a good approximation of the

performance. A metric defined in such a way essentially looks at the thresh-

old at which 50% recall is acheived, which is not a suitable measure of overall

performance. We believe that dScore introduced in Chapter 2 captures the

performance over the entire range of the threshold and is statistically sound.

To make a comparative assessment of the performance across different meth-

ods, we look at the plots for intercept, slope and degree crossing for dScore.

Fig 3.5a shows the intercept for indegree dScore averaged across the 25 net-

works. Except for Sheridan rndprior, the intercepts for the other methods

seem to follow a trend similar to the average overall score. The large inter-

cept for Sheridan rndprior does not imply a better performance at extract-

ing the indegree distribution, as observed by looking at the slope values in

Fig. 3.5b. Sheridan rndprior has the largest slope, thus the sharpest decline

in performance with increasing indegree.
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(a)

Fig. 3.4. Average dScore vs Degree for method comparison. (cont.)

Given the intercept and slope values in this format, it is not possible to make

any reasonable inference about the comparative performance of the differ-

ent methods. Thus, we show the pairwise degree crossing map in Fig 3.6.

The dark red region along the rows for RegMI, RegCorr, Genie3 and TI-

GRESS suggests that these methods are better in general than the undi-

rected methods for inferring the various indegree edges. RegCorr dominates

RegMI completely. Both RegCorr and RegMI dominate Genei3 and TI-

GRESS to a limited extent, i.e., only up to a certain indegree. Comparing

the rows for Sheridan rndprior and Sheridan sfprior offers an interesting

observation; the elements in the row of Sherdian sfprior have a darker red

shade. This implies that Sheridan sfprior more strongly dominates other

methods than Sheridan rndprior does. Thus, suggesting that the sfprior

works better at inferring the indegree distribution.

Also, we can see from the faint blue shade in the cell for Sheridan rndprior
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(b)

Fig. 3.4. Average dScore vs Degree for method comparison.

dScore averaged over all the 25 networks plotted against Indegree and Outdegree. (a):
dScore vs Indegree plot. The dScore axis is on a logarithmic scale, while the indegree
axis is on a linear scale. The exponential decrease in performance is clearly visible for
all the methods. (b): dScore vs Outdegree plot for outdegree edges. The dScore and
outdegree axes are on linear scales. dScore decreases linearly with the outdegree.

in the row of Sheridan sfprior, that after very small indegrees, Sheridan sf-

prior completely dominates Sheridan rndprior in terms of inferrring indegree

edges. Except for Reg, Lasso and Sheridan rndprior, GLASSO and GLASSO

sfprior are completely dominated by rest of the methods. For extracting the

edges of different indegrees, GLASSO is one of the poor performing method.

For MI based variants, CLR completely dominates ARACNe and MRNET.

ARACNe performs better than MRNET at extracting the indegree edges.

CLR, ARACNe and MRNET all dominate MI after small indegrees. For MI

and Corr, the former dominates over lower indegrees while the later does at

higher indegrees. For regression based methods, we see that [43] completely

dominates [58], demonstrating the effet of using resamplng tehniques for the

same class of methods. Other comparative observations can be easily made
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(a)

Fig. 3.5. dScore Intercept and Slope for Indegree for method comparison.
(cont.)

from the degree crossing map. We believe that a representation such as the

degree crossing map for the comparative analysis of methods might be quite

useful. Although, the analysis is contingent upon the linear regresssion fit,

as defined in Chapter 2 for the indegree and outdegree dScores against the

degree, being a valid model.

We again use the degree crossing map to perform a comparative analysis of

the performances for outdegree as well. The degree crossing map is shown

in Fig 3.7. Compared to the indegree degree crossing map, the outdegree

shows a more restricted behaviour. The shade for strong red regions has

diminished in Fig 3.6; complete dominance over all indegrees has been re-

placed by limited dominance over a range of outdegrees. For instance, the

rows for RegCorr, RegMI and Genie3 now show red regions with thinner

shades of red. However, performance against TIGRESS for these methods

has changed. For indegree edges, these methods dominated TIGRESS for a
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(b)

Fig. 3.5. dScore Intercept and Slope for Indegree for method comparison.

Barplots for dScore intercept and slope for indegree averaged across all the networks. (a)
dScore intercept; (b) dScore slope.

small range of indegree, after which TIGRESS was dominating. However,

its vice-versa for outdegree. The general trend that we are observing in mov-

ing from indegree to outdegree has two more component in addition to the

thinning of red regions; a reduced level of blue shades and swapping of some

red and blue regions. However, reduction in shades for blue and red regions

is complementary. If method M1 dominates method M2 for some range of

outdegree, the cell for M2 in the row of M1 will hava a red shade, while there

will be blue shade in the cell for M1 in the row of M2. So, if the red shade

reduces, so does the blue shade. Finally, swapping in shade suggests a switch

in behaviour; the region of outdegree where M1 was dominating, now M2 is

dominating in that region and vice-versa. Thus, the overall picture is that

the comparative differences for indegree edges are reduced when they trickle

down to the outdegree edges. Different inference methods differ in the model

they use for identifying regulation on the genes in a network. Essentially, the
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Fig. 3.6. Degree crossing map for Indegree for pairwise comparison of meth-
ods.

The degree crossing map represents the pairwise degree crossing for all the methods. The
ijth element in the map represents the degree crossing while comparing the ith method
against the jth. A positive value means that i completely dominates j up to a degree
equal to the degree crossing value and after that j dominates i. When i completely
dominates j, we have assigned a positive values of p − 1 to degree crossing in such a
case, to represent the fact that i always lies above j; and when j dominates i, degress
crossing is set equal to −(p−1). A negative value implies that j dominates method i up
to a degree equal to the absolute value of the degree crossing and after that i dominates.

different methods try to capture the incoming edges on all the genes. Thus,

depending upon the assumptions and the adopted models, methods would

vary in their strength for identifying incoming links for the genes. Perhaps,

this might be the reason for the observed reduction in the degree crossing

maps from indegree to outdegree. Methods are trying to identify incoming

edges; and the difference in performance between two methods trickles down

from the indegree to the outdegree through the relationship given in Eq 3.4.

p∑
i=1

diin =

p∑
i=1

diout (3.4)
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where, diin and diout are the in and out degrees for gene i respectively.

Fig. 3.7. Degree crossing map for Outdegree for pairwise comparison of
methods.

The degree crossing map represents the pairwise degree crossing for all the methods. The
inference strategy is the same as described in Section 2.3 and the caption for Fig. 3.6.

We also examined dSeparation for both indegree and outdegree 2 edges; the

plots for dSeparation for all the methods are given in Fig. 3.8. We find that

most of the methods have a statistically insignificant dSeparation. Only Reg,

Sheridan rndprior, MI and Corr have statistically significant dSeparation.

Thus, suggesting that for most methods, all the edges incident on a given

gene are randomly distributed among the set of edges with indegree 2. For

outdegree 2 edges, except for RegMI and RegCorr all the methods have

statistically insignificant dSeparation. Thus, even for outdegree 2, edges

emanating from a given gene are randomly distributed within the set of

outdegree 2 edges.

• Comparative analysis on different three node motifs - The behaviour

of the 17 methods on four different three node motifs is shown in Fig. 3.9.
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(a)

Fig. 3.8. dSeparation for method comparison. (cont.)

All the methods are unequivocally affected by the four motif errors. This has

been previously observed with respect to the DREAM3 challenge [11]. The

negative bias on Fan-in and FFL errors is somewhat similar across all the

methods. However, the difference between different methods is visible for

cascade errors. Regression based methods are less affected by cascade error

compared to MI and Corr based methods. Among MI and Corr, ARACNe

has the least cascade error followed by MRNET and then CLR, MI and

Corr have the highest bias. This outlines the benefit of the data processing

inequality for ARACNe. Interestingly, RegMI and RegCorr are less affected

by cascade error compared to MI and Corr. This could be attributed to the

influence of Reg, which has one of the lowest biases for cacade error. Genie3

also has a low bias for cascade errors. On Fan-out motifs also, Regression

based methods are less affected by the error compared to MI and Corr

based methods. ARACNe for Corr has a slghtly reduced bias compared to

other Corr and MI methods, all of which have high bias for Fan-out errror.
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(b)

Fig. 3.8. dSeparation for method comparison.

The dotted horizontal line represents the dSeparation value which corresponds to a p-
value of 0.05 for the p-value calcuation introduced in Section 2.3. (a) dSeparation for
indegree; (b) dSeparation for outdegree.

GLASSO, GLASSO sfprior and Sheridan rndprior also exhibit a slightly

lower bias compared to the high bias methods such as Corr and MI.

Given these observations, it is evident that all methods are in need of tech-

niques that lead to a reduction in the various motif errors. This is neceas-

sary if these methods are required to be able to faithfully reconstruct motif

structures for the underlying network. For erros such as Fan-in and FFL,

majority of the methods are equally poor. While for cascade error, diferent

methods might need varying amounts of correction. We will see in Chapter 4

that strategy 1 introduced therein helps to reduce Fan-in error among other

things. In Chapter 5 it has been shown that introducing scale free prior

on the degree distribution leads to a decrease in cascade error for the prior

incorporating methods. Fan-out error is also reduced for some methods.

42



3.4 Conclusion

(a)

Fig. 3.9. Percentage Motif Bias for method comparison. (contd.)

3.4 Conclusion

In this chapter, we have discussed the network inference task in a more general set-

ting. We have talked about some of the regularly used network inference methods,

and tackled them within the context of the strategies used to handle the under-

determined nature of the network inference problem. Further, we have tried to

characterize the strengths and shortcomings of some of the widely used network

inference methods. Thus, we hope that this chapter might offer an understanding

of a subset of the existing work in the network inference domain.

One consistent issue and concern among network inference methods is the in-

coporation of biologically relevant information. Biological information might be

available in different forms, either as known regulatory interactions from prior lab

experiments or structural properties. We are concerned with the latter in this

work. Across many benchmarking and review studies into the gene network in-

ference task, there hasn’t been a systematic study of the effect of incorporating
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(b)

Fig. 3.9. Percentage Motif Bias for method comparison.

Percentage Motif Bias for different methods. To assess the capacity of a given method
for identifying different motifs, we look at the performance on both the motif edges and
the motif errors. (a) Percentage AUROC bias for motif edges; (b) Percentage bias for
motif errors.

knowledge about crucial structural properties of gene regulatory networks into the

network inference task. Neither has there been a systematic analysis of available

methods that try to incoporate such information. However, given the extensive

literature [2, 15, 16, 17, 18, 28] reiterating the importance of structural proper-

ties such as scale-free degree distribution, modularity, motifs, etc., it seems obvious

that leveraging these properties will help in inferring biologically relevant networks.

Within this context, the current work is an attempt at studying the properties of

some of the network methods which try to capture structural properties. Where

the current chapter gives a brief overview of the network inference task in gen-

eral, Chapter 5 acts complementarily. There, we specifically discuss the task of

incorporating structural priors in the network inference task.
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Chapter 4

Combination of Methods

4.1 Introduction

One consistent theme across the DREAM challenges has been that combining

together the inferences from multiple methods leads to a prediction with better

performance [10, 11, 12]. The aggregate score is even robust to the inclusion of the

poorly performing methods on a given dataset. There’s a two fold rationale that

motivates this strategy. First, different methods might have complementary per-

formances in that they might be good at identifying two different properties of the

underlying network. Secondly, since the benchmarking studies till date have only

focused on limited datasets, it is likely that methods’ performances might vary

across other previously unseen datasets. For the former situation, aggregation

would offer the benefit of leveraging the strengths of different methods to arrive at

a consensus prediction better than any individual prediction. While, if the latter

is the case, combining predictions from different methods offers robustness against

variation in performance. The DREAM organizers have used one possible way of

aggregating the predictions by averaging the predictions across all the methods.

The community prediction thus obtained has been shown to be comparable, if not

better, to the best performer. In view of this observation, we have experimented
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with two different ways of aggregating methods. One is a product based aggre-

gation, where we combine a pairwise regression technique with another method.

This aggregation strategy is tested on 15 different methods. The second strategy

is implemented by applying the post-processing technique introduced in [34] to

11 different methods. We find that the first strategy has a synergistic effect on

performance for methods which are inherently undirected; essentially, offering a

strategy to direct the edges in symmetric network predictions. While the perfor-

mance for the directed methods does not degrade much. The second strategy also

has a similar directionality effect on most of the undirected methods, however the

performance over the directed methods reduces by large amounts. We analyze

both the strategies in the following sections. Section 4.2 formulates these strate-

gies, Section 4.3 presents the results of the experiments that have been conducted

and Section 4.4 offers a discussion about future prospects.

4.2 Formulation

4.2.1 Strategy 1: Regression based aggregation

This strategy has been inspired by the method introduced in [40]. A meta-

method is discussed that works by combining a pairwise regression method with

a correlation-based relevance network approach. Thus, this approach assumes

marginal independence between pairs of genes while assigning a prediction con-

fidence to the edge between the genes, and thus falls under “Pairwise” category

introduced in the previous chapter. In contrast to the relevance network approach

however, this method tries to infer a causal prediction, essentially assigning asym-

metric weights to the edges between genes i and j and genes j and i.

Given the expression matrix X ∈ Rn×p, where n is the number of samples and p is

the number of genes, the inference problem is decomposed into p(p−1) independent

problems corresponding to all the possible edges in the network. For each edge ij
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from gene i to j, the confidence in that edge is calculated as given in Eq 4.1

Wij =| rij | exp(−SSEij) (4.1)

where Wij is the confidence assigned by the method to the edge from gene i to j,

rij is the pearson correlation coefficient between genes i and j and SSEij is the

sum squared error obtained from regressing gene j on i. For computing SSEij, it

is assumed that gene j can be modelled as a polynomial function of gene i, Eq 4.2.

xj = a0ij +
m∑
k=1

akijx
k
i + εij (4.2)

where amij are the coefficients, m is the order of the polynomial and xi is the ith

column of X and εij is the error term. It is assumed that Eq 4.2 is applied element

wise to the components of column vectors xi and xj. Now, SSEij can be computed

as given in Eq 4.3

SSEij =
n∑
u=1

(uxj − ux̂j)
2 (4.3)

where uxj is the uth element of the jth column of X and x̂j is the least squares

estimate of xi after solving Eq 4.2.

The intuitive argument behind using SSEij is that it captures the capability of

gene i to regulate the expression of gene j. Thus, Eq 4.1 assigns a strength of

regulation to the regulatory interaction from gene i to gene j. Wij in Eq 4.1, acts

as an AND combination of the pearson correlation coefficient and the regression

term; Wij has a large value only when | rij | is high and SSEij is low. The

prediction matrix W ∈ Rp×p is computed after calcuating Wij for each edge in the

network. The final prediction matrix is obtained by normalizing each column of

matrix W by the q-norm 1 of that column, so as to ensure that all edges incident

on a gene are on a common scale.

1q is assigned a value of 3.5 after experimenting with different values [40]
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To generalize this approach for any given method, we modify Eq 4.3.

Wij =| WM
ij | exp(−SSEij) (4.4)

where WM
ij is the strength of interaction from gene i to j assigned by method M .

Thus, W can now be given as in Eq 4.5.

Wij =
| WM

ij | exp(−SSEij)
(
∑p

i=1(| WM
ij | exp(−SSEij))q)1/q

(4.5)

With the formulation in Eq 4.5, now the prediction confidence metric can be

applied to any method that infers a weighted adjacency matrix. From the above

formulation, it is evident that if even method M infers an undirected network,

matrix W returns a directed network. The word Reg will be appended at the

beginning of the name of each method after application of strategy 1.

4.2.2 Strategy 2: CLR based post-processing

CLR was introduced in Chapter 3, where it was discussed that CLR introduces a

sparsity inducing post-processing procedure that works by comparing the entries

of the inferred relevance network adjacency matrix against its background and

removes the “weak” entries. Till now, this post-processing technique has only been

applied to MI and correlation based approaches [10, 11, 12, 13, 14, 34]. Here, we

apply CLR based post-processing prediction to other methods. For an adjacency

matrix WM from method M , the significance of interaction between gene i and j

can be computed by comparing WM
ij against an empirically estimated distribution

of background values. The new z-score values would now be computed as given in

Eqs 4.6 and 4.7.

z1(i, j) = max(0,
WM
ij −

∑
i′ 6=jWi′j
n

σj
) (4.6)
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where σj is the standard deviation of the values in the jth column of WM , exclud-

ing the diagonal term.

z2(i, j) = max(0,
WM
ij −

∑
j′ 6=iWij′

n

σi
) (4.7)

where σi is the standard deviation of the values in the ith row of WM , excluding

the diagonal term. The ijth element of the final prediction matrix W can now be

calculated as given in Eq 4.8

Wij =
√
z21 + z22 (4.8)

As discussed in Chapter 3, W would be sparse with many entries being zero. The

word CLR will be appended at end of the name of each method after application

of strategy 2.

4.3 Results

We conducted experiments to test strategies 1 and 2 on all the size 100 networks.

Strategy 1 and 2 were applied to 15 and 11 network inference methods respectively.

We analyzed the effectiveness of the strategies in inferring the overall topology,

degree distribution and motif structures of the gold standard networks using the

global and local metrics introduced in 2. The following discussion explores in

detail the results of these experiments.

• Strategy 1 improves area under the curve (AUC) - Fig. 4.1 shows the

score averaged across all the 25 networks. Apart from TIGRESS and Genie3,

the score improves drastically for all the other methods. We observe similar

trends across all medium sized topologies. Furthermore, we see that after

application of strategy 1, six erstwhile undirected methods, now have better

performances than the top performer in the DREAM4 in-silico multifactorial

challenge, i.e., Genie3. In fact, most of these methods perform better than
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Genie3 across all the size 100 networks. The effect of strategy 1 is synergistic

in nature, this can observed by referring back to Chapter 3, where we find

that the regression part of strategy 1 performs poorly in isolation.

Fig. 4.1. Average Overall Score for studying strategy 1.

The overall score averaged over all the networks for studying the effect of strategy 1.

Interestingly, while Sheridan sfprior performs better than Sheridan rndprior,

RegSheridan rndprior performs better than RegSheridan sfprior. One pos-

sible explanation for this might be the asymmetric nature of indegree and

outdegree distributions for all the networks except PIPO. We find that on

PIPO networks RegSheridan sfprior is better than RegSheridan rndprior For

the PIPO networks, both indegree and outdegree distributions are scale-free

with γ = 2.5. The effect of asymmetric degree distribution can also be ex-

amined by looking at the scatter plot shown in Fig. 4.2, where we see that

there is a statistically significant positive correlation between the maximum

indegree in a network and the difference in AUPR or AUROC values for

RegSheridan sfprior and RegSherdian rndprior. It is evident that four out
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of the five PIPO networks have relatively higher indegrees among all the 25

networks. Sheridan sfprior adds a scale free prior on the total degree distri-

bution of the inferred network. However, except for PIPO, other networks

tend to have an exponential indegree distribution. As we have seen, strategy

one directs the undirected prediction from Sheridan sfprior and Sheridan

rndprior. Perhaps, with the directional nature of Strategy 1, Sheridan sf-

prior ’s heavy-tailed distribution fairs poorer than the dense distribution of

Sheridan rndprior on networks other than PIPO due to the exponential

nature of the indegree of the underlying networks.

Fig. 4.2. Maximum Indegree vs %AUROC Difference for comparing RegSh-
erdian sfprior and RegSherdian rndprior.

Scatter plot for studying the source of difference between RegSheridan sfprior and RegSh-
eridan rndprior versus Sheridan sfprior and Sheridan rndprior. Difference in perfor-
mance between RegSheridan sfprior and RegSheridan rndprior is positive for four out
of the five PIPO networks. Difference in AUROC between RegSheridan sfprior and
RegSheridan rndprior appears to be positively correlate with maximum indegree in the
network, and thus with the nature of the indegree distribution.

The score metric gives a neat overall picture of the network inference process

for comparison among methods, however it does not inform regarding the
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precision of a given method. Biologically, the left upper half of a precision

recall curve is the most relevant for network discovery, since this region

corresponds to predictions with high precision. To elucidate the effect of

strategy 1 over the entire region of the ROC and PR curves, we look at

Figs. 4.3a and 4.3b. The drastic effect of strategy 1 is quite evident here

as well. Specifically, for Corr, Sheridan rndprior and Sheridan sfprior, the

curves now begin at the top left half of the precision recall curve.

One of the issues with MCMC-based Sheridan method is that a large number

of the top edges in the prediction list have the same confidence score. Thus,

these edges are indistinguishable, which explains the the low and flat part

of the original Sheridan method in the left half of the precision recall curve

as seen in Fig 4.3a. Strategy 1 changes this behaviour, and the curves now

begin with high precision. The erstwhile equivalently scored edges are now

being distinguished. Furthermore, the curves with strategy 1 also have a

lower slope; RegSheridan sfprior stays above all the other methods for all

values of recall.

Interestingly, on closer inspection we see that the curves for Genie3 and

TIGRESS also show improvement with strategy 1 in early recall region be-

tween recall values 0.1 and 0.3 in the precision-recall space. Additionally,

RegTIGRESS now begins at the top left corner of the precision recall whereas

TIGRESS did not. The performance improvement for RegSheridan rndprior

and RegSheridan sfprior is also visible in the ROC curve of 4.3b, where it

is evident that both of these methods dominate over high recall regions as

well. Except for Genie3 and TIGRESS, these arguments also hold for all

the other networks as well.

• Strategy 1 is not limited to imparting directionality alone - Corr,

MI and derived methods, GLASSO and Sheridan, all of these methods are

inherently undirected in nature. Thus, Fig. 4.1 suggests that methods which

try to infer directionality tend to have better performance with strategy 1.

Strategy 1 essentially performed an element-wise product of the prediction
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(a)

Fig. 4.3. Average Precision-Recall and ROC curves. (cont.)

matrix inferred by a given inference method with a regression based directed

method. Thus, we intuitively expect strategy 1 to impart a directional nature

to any undirected method given as input to it. Indeed, that is the case as

we can see in Fig. 4.4. All the erstwhile undirected methods, now have high

causal content; many of these methods now have higher causal information

than Genie3 as well. This behaviour stays consistent across all the networks.

The behaviour of GENIE3 and TIGRESS however, is not consistent across

all the networks; sometimes the causal content reduces while at other times

it increases slightly.

To assess whether the effect of strategy 1 is only ascribing directionality to

an undirected prediction, we convert all the network predictions to undi-

rected predictions by averaging the values in th ijth and jith entries of

the prediction matrices. The results after this transformation are shown in

Fig. 4.5. Methods like Lasso, GLASSO and Sheridan rndprior consistently
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(b)

Fig. 4.3. Average Precision-Recall and ROC curves.

Precision recall and ROC curves for different methods with and without strategy 1. The
PR and ROC curves have been averaged over the five DREAM4 networks.

perform better with strategy 1 even after we remove directionality. RegSh-

eridan sfprior shows slightly better performance than Sheridan sfprior on

some networks only. RegCorr and RegMI show an increase in the overall

score averaged across all the networks. However, on DREAM4 networks,

RegMI based methods have huge dips in score with strategy 1. The be-

haviour is not consistent across all the methods. If directionality was the

only information added by strategy 1, we would expect the score to come

down to pre-strategy 1 levels after the symmetry inducing transformation.

Thus, this observed effect suggests that something more complex is going

on; and the causal information added by strategy 1 is coupled with other

information about the underlying networks. This information is being de-

stroyed by the symmetry transformation for some of the methods, while some

methods still possess the extra information.
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Fig. 4.4. Causal Area for studying strategy 1.

Area under the Causal Accuracy vs. Threshold plot for studying strategy 1. The plot
has been averaged over the five DREAM4 networks for all the methods.

• Strategy 1 aides in extracting the degree distribution of the under-

lying network - Experiments similar to the ones conducted in Chapter 3

were used to calculate dScore for all the methods with and without strategy

1 to assess the effect of strategy 1 on degree distribution estimation. The

obtained dScore values for different indegrees are log-transformed and then

regressed against the indegree values to obtain the intercept and slope values

and consequently the degree crossings as seen in 4.6a.

We see that except for Genie3 and TIGRESS all the other methods are

dominated by the strategy 1 versions. The degree crossing for RegGenie3

against Genie3 is 3. Thus, we can conclude that overall strategy 1 versions

of all the methods except Genie3 and TIGRESS can estimate the indegree

distribution better. Interestingly, RegTIGRESS climbs above TIGRESS at

indegree 2, thus performs better than TIGRESS at higher indegrees. This

also explains the decrease in performance with strategy 1. It was shown in
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Fig. 4.5. Average Overall Score for studying the directional effect of strategy
1.

The overall score after converting all the directed methods to symmetric predictions.

Fig 3.4 that the best inferred edges for any method are the lowest indegree

edges; the performance deteriorates exponentially thereafter. Thus, only

Genie3 doesn’t show an improvement in its capability to identify indegree

distribution better with strategy 1.

Similar to the above strategy we analyze the performance of strategy 1 on

outdegree estimation. The plot for outdegree crossings is given in Fig. 4.7.

We see that except for Genie3, all the other methods perform better with

strategy 1 up to medium outdegrees only. This effect is similar to the trend

we observed in Section 3.3 for the difference between indegree and outdegree.

Here again, we see that the effect has diluted while trickling down from

indegree to outdegree edges.
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(a)

Fig. 4.6. Degree Crossing for Indegree for studying strategy 1.

Within the context of the discussion in Section 2.3.2 with regards to degree crossing,
a given method’s version with strategy 1 is compared against the base method. Thus,
with strategy 1 the method would be M1 and the base method would then be M2. So,
the conclusions regarding degree crossing from 2.3.2 would hold accordingly. A value of
p − 1 for the degree crossing implies that M1 dominates M2. Any other positive value
means that M1 dominates M2 up to a degree equal to the degree crossing value and after
that M2 dominates M1. A negative value implies that M2 dominates method M1 up to
a degree equal to the absolute value of the degree crossing and after that M1 dominates.
A value of −(p− 1) means that M2 completely dominates M1.

• Strategy 1 exhibits increased confidence in identifying Fan-out and

Fan-in motif edges

As we have seen, strategy 1 aides in extracting the indegree distribution.

While for outdegree distribution it aides for outdegrees up to 6 or 7. Fig. 3.4

shows that the performance on outdegree 7 drops down to the level of random

predictions. Contingent on the fact that this trend continues for higher

outdegrees as well, we could assume that strategy 1 might help in extracting

Fan-in and Fan-out motifs better than base methods alone.

57



Chapter 4. Combination of Methods

Fig. 4.7. Degree crossing for outdegree for studying strategy 1.

Degree crossing averaged across the networks. The inference strategy is the same as
described in Section 2.3 and the caption for Fig. 4.6a.

To confirm this hypothesis, we refer to Fig. 4.8, where we have shown the

percentage change in AUROC bias for edges of various three node motifs

for the DREAM4 networks. It is clear from Fig. 4.8a that strategy 1 indeed

leads to an increase in bias for the prediction of Fan-in and Fan-out edges

for most of the methods. The performance on other Network topologies is

also similar. However, increase in bias for Fan-out edges is accompanied

by an increase in bias for Fan-out error as shown in Fig. 4.8b. This is not

unexpected though, as it has been shown before that most methods tend to

identify the false edge between nodes 2 and 3 in Fig. 2.2 for Fan-out motifs

[11]. Though the indirect edges have been pronounced for Fan-out motifs

with strategy 1, this is not the case for other indirect interactions as well.

It has been seen in previous studies that regression based inference methods

are less prone to the indirect cascade error. Since strategy 1 uses a pairwise

regression based method, we expect it to have a reduced bias for the cascade

error; and this is evident in Fig. 4.8b.
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(a)

Fig. 4.8. Percentage Motif Bias for studying strategy 1. (cont.)

• Strategy 1: Performance on DREAM5 networks

To assess the performance of strategy 1 on large scale networks, we leveraged

the networks provided as part of the DREAM5 Network Inference Challenge

[12]. We used two of the three networks from the challenge- Networks 1 and 3.

The former has been extracted from the known topology of E.coli and some

random edges have been added to the final network; this network has been

termed the in-silico network, since the expression data was generated using

the tool GeneNetWeaver [20]. While Network 3 is created using available

E.coli data [12]. For most of the methods, we used the partial prediction list

provided by the DREAM organizers [12]. The DREAM5 challenge required

the participants to provide a list of the top 100,000 edges predicted by their

methods along with predictions confidences. We have used these truncated

lists with 100,000 or less predictions. However for the correlation based

methods, MI methods and the ANOVA based method [42] (called Other 2

in the DREAM5 challenge) we have generated the full prediction lists and
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(b)

Fig. 4.8. Percentage Motif Bias for studying strategy 1.

(a) Percentage AUROC bias for motif edges; (b) Percentage bias for motif errors.

then applied strategy 1. Strategy 1 has been applied in a naive manner,

neglecting the supplemental information about the different experimental

conditions associated with the expression data.

The results for both the networks are shown in Fig. 4.9. We see in Fig 4.9a

that strategy 1 improves the performance for all the methods including the

community prediction. For the purpose of comparison, we have also included

the score for the prediction generated by using the Reg part in isolation. The

synergistic effect of strategy 1 is again visible here. If we look at Genie3,

called Other1 in the DREAM5 challenge, which was the top performer in

the in-silico category, we see that the performance after applying strategy 1

is better than both Reg and Genie3. Similar observations are true for many

of the methods on this Network.
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(a)

Fig. 4.9. %AUPR for methods on DREAM5 networks for studying strategy
1. (cont.)

For the E.coli dataset, the performances of seven out of the eight regression

based methods, from Regression 2 to Regression 8, improves after apply-

ing strategy 1. Interestingly, Regression 3 performs better than the second

best method Genie3, in terms of AUPR values, after applying strategy 1.

Apart from regression based methods, Correlation (Correlation 2 and Cor-

relation 3), Meta1 and Bayesian (Bayesian 3 Bayesian 6) show improvement

in performance with strategy 1.

However, the performances deteriorate for the rest of the methods on this

network. There are a couple of reasons why this might be the case. Biolog-

ical networks are more complex than in-silico systems like Network 1 [42].

Use of polynomial regression in strategy 1 might not be appropriate for cap-

turing the complexity in biological networks. Secondly, most methods which

have performed well on the E.coli network have leveraged the supplemental

information provided about the experimental conditions, [12, 42]. In light
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(b)

Fig. 4.9. %AUPR for methods on DREAM5 networks for studying strategy
1.

(a) Network 1 - In silico; (b) Network 3 - E.coli The abbreviations used for different
class of methods- B:Bayesian, C:Correlation, M:Meta, MI:Mutual Information, O:Other,
R:Regression. A number after any of these represents a method which was one of the
participants in the DREAM5 challenge. For instance, B1 refers to the method Bayesian
1 in [12]. Reg is appended to all the methods after applying strategy 1. Starting from
the left till the method Reg, only the odd number bars in the plot have been labelled
with an abbreviation for a method. All the even numbered bars till Reg corresponds to
the application of strategy 1 to the method to its immediate left. For instance, the bar
to the immediate right of B1 refers to the method RegBayesian 1. The bar to the right
of the Community method belongs to RegCommunity.

of this information, naive application of strategy 1 without regard for this

information would end up destroying the advantage leveraged by methods

that exploit this knowledge about experimental conditions.

Lastly, Küffner et al. [42] have shown that local measures of dependency

are more suitable for biological networks such as the E.coli network used

in DREAM5 challenge to accurately identify the underlying network. This

can be attributed to the fact that most experimental expression data has

been collected by different labs and in a variety of different experiments.
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Global measures of dependencies tend to neglect interactions which might

be supported by a subset of the experiments, and would be picked up by local

measures. Thus, to apply strategy 1, we need to modify the regression part

to leverage the information provided about different experimental conditions;

and perhaps also apply strategy 1 in a more local fashion to different subsets

of the data and then integrate the findings.

• Strategy 2 improves performance for some methods and degrades

it for others - The effect of Strategy 2 has been characterized by using

11 network inference methods. Five methods generate directed prediction

networks, the rest are undirected methods. The methods cover entire range

of method categories, in terms of underlying methodological approach, dis-

cussed in Chapter 3. Both global and local analyses have been conducted

on the 25 medium size networks.

Fig. 4.10 shows the score averaged across all the 25 networks. Six meth-

ods exhibit improvement in performance after applying strategy 2, while

five experience a decrease. A similar trend is observed for the score averaged

across individual network topologies. Except for TIGRESS, performance has

improved for all the other methods with sparsity assumptions, i.e., Lasso,

GLASSO and GLASSO sfprior. Though for Lasso, the increment in per-

formacne is quite small. It is interesting to observe that the performance

increases for Sheridan rndprior with strategy 2 while decreases for Sheri-

dan sfprior. The former assumes a dense graph generating prior distribution

while the latter uses the scale-free distribution as a prior on the space of

graphs. Contrary to such a bayesian way of introducing biologically-inspired

specific sparsity constraint, strategy 2 uses a crude way of introducing spar-

sity in the network. Thus, we see that performance increases for some spar-

sity based methods while degrades for others.
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Fig. 4.10. Average Overall Score for studying strategy 2.

The overall score averaged across the five network topologies, PIPO, DREAM4,
DREAM3, EIPO and EIPO Modular for studying strategy 2.

• Strategy 2 aides in extracting the Indegree distribution of the un-

derlying network for Corr, MI, GLASSO and GLASSO sfprior

- The degree crossing plot is shown in Fig. 4.11a. From this figure, we see

that for TIGRESS, Sheridan sfprior, Genie3, RegMI and RegCorr strategy 2

leads to a decline in the method’s ability to extract the indegree distribution.

Whereas Corr and MI are better able to extract indegrees greater than 1

after application of strategy 2, justifying the use of strategy 2 on these two

methods on a regular basis. Interestingly, the behaviour on Sheridan rnd-

prior is the same. Moreover, GLASSO and its scale-free variant, completely

dominate with strategy 2. However, Lasso and Sheridan rndprior show a

very limited ability to aide in indegree estimation, but in different regions

to each other. Lasso performs well only for low indegrees, while Sheridan

sfprior does for huge indegrees.

Degree crossing plot for outdegree is given in Fig. 4.12. Disparate to indegree,
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(a)

Fig. 4.11. Degree Crossing for Indegree for studying strategy 2.

The degree crossing for Indegree averaged across all the methods for studying strategy
2. Within the context of the discussion in Section 2.3.2, with regards to degree crossing,
a given method’s version with strategy 2 is compared against the base method. Thus,
with strategy 2 the method would be M1 and the base method would then be M2. So,
the conclusions regarding degree crossing from 2.3.2 would hold accordingly. A value of
zero for the degree crossing implies that M1 dominates M2. A positive value means that
M1 dominates M2 up to a degree equal to the degree crossing value and after that M2

dominates M1. A negative value implies that M2 dominates method M1 up to a degree
equal to the absolute value of the degree crossing and after that M1 dominates.

strategy 2 augmented GLASSO, GLASSO sfprior and Sherian rndprior have

limited capabilities on outdegree with degree crossings equal to 7 and 6

respectively. For outdegree distribution, even Corr and MI have limited

estimation capability; the degree crossings are 6 for both. Again, illustrating

the dilution effect from indegree to outdegree. However, some methods have

reversed their behaviour. For instance, Sheridan sfprior now dominates only

at low indegrees. Lasso and RegMI have also switched region of dominance

with strategy 2.
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Fig. 4.12. Degree crossing for outdegree for studying strategy 2.

The degree crossing for outdegree averaged across all the networks for studying strategy
2. The inference strategy is the same as described in Section 2.3 and the caption for
Fig. 4.11a.

• Strategy 2 reduces bias for Cascade and Fan-out error - The aim

of strategy 2 is to induce sparsity [34]. Thus, if successful, it would lead to

reduction in false positives. In this study, we see that strategy 2 leads to a

reduced bias in Cascade and Fan-out error Fig. 4.13. RegMI and RegCorr

are the anomalies here. This could be due to the fact strategy 2 was not

directly applied to RegCorr and RegMI, rather strategy 2 was applied to

Corr and MI and then strategy 1 was applied.

4.4 Conclusion

In this chapter we have reaffirmed the conclusion of the DREAM5 network infer-

ence challenge that meta methods, which aggregate the predictions from different
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(a)

Fig. 4.13. Percentage Motif Bias for studying strategy 2.

methods, might perform better than any of the individual approaches. A rank av-

erage based aggregation method was used in the DREAM5 study. However, here

we have used a product based aggregation strategy. We have shown that strategy

1 introduced in this chapter consistently improved the performance for the class

of undirected methods across 25 synthetically generated, topologically varied net-

works. The performance enhancement had far-reaching consequences in terms of

better estimating the degree distributions of the underlying networks. Further,

it was also demonstrated that this strategy even when applied naively, without

consideration for the type of experimental data and the underlying conditions,

might lead to an increment in performance. This was seen for all the participat-

ing methods in DREAM5 challenge over the in-silico network and for some of the

methods on the E.coli network. Another post-processing based strategy was also

introduced, which also improved the performance for a class of undirected method.
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However, the results in this chapter also warn against inappropriately used aggre-

gation of different methods. For instance, with the E.coli network, performance

of the top methods on this network decreased with strategy 1. This highlights the

shortcomings of a naively applied meta analysis with regards to strategy. Since

this data, like most real biological datasets, had different types of experimental

conditions, the application of any meta analysis has to be cognisant of this fact.

For instance, the strategy introduced in the method labelled Regression 3 in the

DREAM5 challenge, could be used to leverage the knowledge pertaining to the

different experimental conditions. It is worthwhile to note that for this method,

strategy 1 gave a significant improvement on the E.coli network, leading to a per-

formance better than the second best method. Regression 3 uses self organizing

maps to assigns an ordering to the various experiments in the expression data.

Further, an ordering is assigned to the experimental conditions within an exper-

iment as well. Strategy 1 could potentially be used with such an ordering of the

experiments to infer either a global network or multiple networks over the different

experiments which can then be aggregated. Another potential way to appropri-

ately apply strategy 1 could be to use local regression techniques such as using

gaussian basis function regression on the ordered set of experiments to capture

the local trends in the data. It has been shown in [42], that local analysis might

lead to significantly better performance than global analysis. Furthermore, simple

guidelines such as using appropriately lagged values for the time series data should

be regularly used.

Besides the aforementioned implementational insights, the results in this chapter

provide another set of evidence in favor of using a meta-analytic approach towards

network inference. It has been shown previously on occasions [12, 59] that multiple

methods, when combined to leverage the strengths of each method, may give

signficantly better performance than any individual method.
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Chapter 5

Structural Prior on Degree

Distribution

5.1 Introduction

Generally, the data available from microarray experiments, matrix X, is high-

dimensional; the number of rows-experimental conditions and/or timepoints-is

significantly smaller than the number of columns, the number of genes for which

measuements are made. Put succintly, this means that n � p. A direct conse-

quence is that the inference task is underdetermined: in the unconstrained form

a unique solution does not exist [19]. Given p genes, there are p(p − 1) possible

interactions 1, which grows in an exponential manner with the number of genes.

If genes in the network have multiple regulators (transcription factor genes), then

we have a case of combinatorial regulation; and this drastically increases the size

of the solution space. Due to the large solution space coupled with limited and

uninformative data [12, 19] it becomes infeasible to find a unique solution; a large

number of solutions with equal conformity to the data are possible. Inference

techniques need some form of approximation to reduce the size of the solution

space to infer a high fidelity network in a time-judicious manner. Approximations

1This assumes that the transcription factors or regulators are among these p genes.
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to handle the combinatorial nature of gene regulation were discussed in Chap-

ter 3. Another way to shrink the solution space is to use complementary sources

of information. Inference techniques could incorporate domain knowledge in the

form of prior information. Curated databases such as RegulonDB maintain lists of

verified gene-gene interactions for different organisms; these identified links can be

fed into the inference algorithms as prior information to enhance the performance

[60, 61, 62].

A rich source of prior information is the known structural properties of GRNs.

Lots of effort has been expended in studying these structural properties [2, 15, 16,

17, 18, 28]; GRNs are known to have exponential indegree and scale-free outdegree

distributions, have modular structure, are composed of small overexpressed sub-

graphs that have rich dynamic properties, etc. Other than edge-based priors, these

more generic sources of information could be leveraged to augment the network

inference task. Modular structural priors have been used fairly often. Knowledge

pertaining to degree distribution of the regulatory links in the network has been

explored to a limited extent. Motifs have been even less systematically explored for

restricting the size of the solution space [39, 63]. In this chapter we focus on degree

distributions as a means of aiding the network inference task. Section 1 briefly

discusses some of the efforts made at incorporating the degree distribution infor-

mation in the network inference task, Section 5.2 introduces a simulated-annealing

based method for imposing a scale-free distribution on the indegree, Section 5.3

presents the results of experiments conducted on different methods that include

the degree distribution prior and Section 5.4 offers a discussion of the results from

Section 5.3 and offers potential directions for future research.
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5.2 Incorporation of degree distribution as a form

of structural prior for network inference

Many network inference methods impose the constraint of sparsity to reduce the

solution space of networks [34, 35, 36, 43, 44, 51, 58]. However, GRNs belong to

a special subset of sparse networks; GRNs are known to have scale-free degree

distribution [2, 15]. Thus, sparsity constraint alone might not be sufficient to ap-

propriately reduce the size of the solution space. A more principled approach is to

constrain the solution space to networks which have a scale free degree distribution.

Bayesian framework offers the most natural way to impose a prior distribution on

the space of networks. This can formally be expressed as given in Eq 5.1

P (G,X;E, V ) = P (X|G)P (G) (5.1)

where G is a graph-directed or undirected and with edge set E and vertex set

V ; G represents the underlying gene regulatory network, P (G,X) is the joint

distribution for data X and the graph G, P (X|G) is the likelihood for the data

and P (G) is the prior distribution over the class of possible networks. An unbiased

estimate for P (G) would be a uniform distribution. However, biologically such a

prior would not make sense and given the limited nature of the available data would

not be feasible as well. Methods which impose a simple sparsity constraint do not

explicitly offer the prior distribution being appealed to; most of these methods do

not use the bayesian approach. Thus, in the absence of any guarantee about the

nature of the search space, the structural properties of the inferred network are

unknown.

Given the fact that biological networks are scale-free, the obvoius choice for P (G)

is a distribution that favors scale-free distributed networks. Different methods

have tried to exploit this knowledge [29, 40, 54, 55, 56, 57, 64, 65] for reducing

the size of the solution space. With the exception of [40], all the other methods

belong to the class of undirected techniques, most of which use the framework of
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gaussian graphical models (GGM) to incoporate the scale-free degree distribution

as prior information. GGM based methods use a bayesian framework for incorpo-

rating the prior while the other methods apply deterministic techniques to restrict

the solution space. We bin these methods into three categories-Adjacency Thesh-

olding, Graphical and Binary Programming. The details for these categories are

presented next.

• Adjacency Thresholding

WGCNA [29] introduces a simple thresholding based method for selecting a

scale-free network from a given adjacency matrix. Two thresholding schemes

are possible, “soft” and “hard”. The thresholding process is a function of

usually a single parameter, and varying the value of this parameter leads to

networks with differing amounts of sparsity. The selection of the parameter

is done using a “scale free topology criterion”; the parameter is selected such

that the thresholded network has scale-free topology.

Given a positive, symmetric and weighted adjacency matrix W ∈ Rp×p,

where p is the number of genes in the network, and an associated parameter

β the method proceeds as follows.

1. Vary β in the range (βmin, βmax).

2. For each value of β threshold the weighted adjacency matrix, and for the

obtained network perform a least-squares linear fit between the degree

distribution and the degree values on a log-log scale as given in Eq 5.2.

yβ(k) = w0 + wβxβ(k) + εβ, k ∈ {1, 2, . . . , d} (5.2)

where k is the degree, d the maximum degree in the thresholded net-

work, yβ(k) = log(p(k)), xβ(k) = log(k) and εβ is the error term.

3. Select the value of β for which R2 value for the least squares fit for

Eq 5.2 is greater than 0.80 and wβ is ¡ 0. Further, ensure that the mean

connectivity of the thresholded network is high.
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When hard thresholding is used, β corresponds to a value in the range (0, 1)

2 such that entries below β are set to 0, while those above β are set to 1.

Under soft thresholding, β takes on integer values and each entry of W is

modified as given in Eq 5.3.

Wij = W β
ij (5.3)

where Wij is the ijth element of W . After applying Eq 5.3, some entries in

W become zero.

This way of extracting scale-free networks has issues. The R2 value for the

least squares fit in Eq 5.2 is not a statistically good measure to assess the

goodness of fit to a power law curve [66]. The relationship between R2 and

β is noisy [29]. Finally, this method acts as a post-processing procedure

that does not utilize the scale-free prior in a systematic way for the task of

network inference.

• Graphical

The methods under the ambit of this category, utilize the framework of

gaussian graphical models (GGM) to infer a gene regulatory network. The

expression data is assumed to belong to a multivariate gaussian distribution,

and network inference reduces to the task of estimating the non-zero entries

of the precision matrix. To induce sparsity in the inferred precision matrix,

l1 regularization on the elements of the precision matrix has been used regu-

larly. To estimate the l1 constrained structure of the precision matrix many

methods have been devised such as [51, 52, 53] and others. One class of

methods within this category either modify the l1 constraint or introduce

new constraints that restrict the solution space to precision matrices which

have scale free or approximately scale free degree distribution.

If X ∈ Rn×p is the expression matrix, under the GGM framework, X is

assumed to have a p-variate gaussian distribution N (0,Σ), where Σ is the

2It is assumed here that the entries of the weighted adjacency matrix are constrained to lie
between 0 and 1.
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covariance matrix. In order to estimate the underlying GRN, we need to es-

timate the precision matrix Ω = Σ−1. Generally, a constrained optimization

problem is solved, which is defined in Eq 5.4.

minimize
X

S(X,Ω) = L(X,Ω) + λC(Ω) (5.4)

where L(X,Ω), the cost function, takes on different forms depending upon

the specific methodology. C(X) is the constraint term added to induce

scale-free distributed precision matrix Ω, λ is a parameter and S(X,Ω) is

the total cost function to be minimized. The function C(.) penalizes the

precision matrix so as to infer a scale-free or approximately scale-free degree

distribution. Depending upon the formulation, the form of C(.) would be

different. Usually, different methods proceed by defining an approximate

probability term for a graph in terms of the degree distributions of the genes,

which is given in Eq 5.5.

p(G = (V,E); ε, γ)∼
∏
i∈V

(deg(i) + ε)−γ (5.5)

where G is an undirected graph corresponding to the GRN, V is the vertex

set, E is the edge set, deg(i) is the degree of gene i, ε and γ are the parameters

of the distributions. The negative log-likelihood of Eq 5.5 is then used as

the function C(.) in Eq 5.4.

[54] estimates deg(i) using the term given in Eq 5.6.

deg(i) =

∣∣∣∣∣∣∣∣∑
j 6=i

Ωij + εi

∣∣∣∣∣∣∣∣
1

(5.6)

where deg(i) is the degree of the ith gene and ε is a small term added to

avoid the degree from becoming zero. C(.) is given as defined in Eq 5.7

C(Ω) =

p∑
i=1

log(deg(i)) + β

p∑
i=1

∣∣Ωii

∣∣ (5.7)
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Finally, the optimization problem in Eq 5.4 is solved using a minorize-

maximize algorithm. It is shown that Eq 5.4 can essentially be solved by

repeated application of any of the methods for solving l1 regularized formu-

lation for GGMs. The constrained term in Eq 5.7 has been shown to be

equivalent to imposing and approximate log-normal prior on the underlying

graph; and log-normal distribution can be used as an approximation to scale

free distribution. Combination of [54] with GLASSO will be referred to as

GLASSO sfprior henceforth.

[55] uses submodular relaxation to approximate deg(i) and arrives at a C(.)

given by Eq 5.8

C(Ω) =

p∑
i=1

p−1∑
j=1

(log(j + 1)− log(j))|Ωi,(j)| (5.8)

where Ωi,(j) is a permutation of the elements of the ith row of Ω such that

|Ωi,(1)| ≥ |Ωi,(2)| ≥ ... ≥ |Ωi,(p−1)|. The C described in Eq 5.8 mimics a l1

norm except for the additonal weight, which characterizes how each edge

ranks with respect to the other edges of its neighbouring edges. Alternating

direction method of multipliers (ADMM) is used to optimize modified Eq 5.4.

Similary, different assumptions regarding deg(i) will lead to different forms

for the score function L(.), which can be optimized accordingly.

Another class of methods infer the gene regulatory network from a posterior

distribution on the structure of the gene regulatory network by imposing

a more rigorous prior and using a Markov Chain Monte Carlo (MCMC)

method [57] for model selection. [57] introduces a scale-free prior on the

space of possible networks using the static model presented in [67]. To a

given graph G with vertex v and edge set E, a prior probability is assigned

by introducing probability of existence or non-existence of edges between

pairs of genes. Under assumption of independence, the probability for the
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entire graph can then be given as Eq 5.9

P (G) =
∏
ij∈E

(
1− (1− 2sisj)

pK
) ∏
ij /∈E

(
1− 2sisj

)pK
(5.9)

where si and sj are weights assigned to genes i and j, K is a parameter of

the model. To assign the weights, a permutation σ of the gene labels is used.

The term (1− 2sisj)pK represents the probability of no edge being present.

Under σ the weights are assigned as given in Eq 5.10

si =
σ−µi∑p
k=1 σ

−µ
k

(5.10)

where µ is the Zipf exponent and lies between 0 and 1. A metropolis hastings

sampler is used to sample from the posterior P (G | X) ∝ P (X | G)P (G).

The most crucial parts of the update process in the metropolis hastings sam-

pler are the gene permutation sigma and network decomposability. sigma is

updated by randomly selecting any two genes and swapping their labels. Net-

work decomposability is of paramount importance to the entire algorithm,

since likelihood for GGMs can efficiently be updated over decomposable

graphs. Thus, an edge addition or deletion, while updating the network, is

only accepted if the resulting graph is decomposable. A weighted adjacency

matrix can be created by estimating the frequency of each edge along the

MCMC chain. An interesting aspect of this method is that the exponent of

the scale-free distribution can also be estimated.

The difference in the two classes of graphical methods that incorporate a

scale free prior on the structure of networks is the form of the prior. Methods

like [54] and [55] use a crude approximation for the prior, while [57] applies

a more rigorous one. Moreover, the network model used for the prior in

[57] has been shown to faithfully generate scale free networks [67]. Thus,

for [57] we have high confidence in the structural properties of the inferred

network. [57] even estimates the exponent for the scale free distribution of

the underlying gene regulatory network, which is absent from [54, 55] and
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similar methods. However, the use of MCMC based sampling makes [57]

computationally more demanding. The method in [57] has been referre to

as Sheridan in this work.

• Binary Programming

RegCorr, [40], introduced a systematic way for inferring scale free networks

under a binary programming formulation. The central idea is to incorporate

scale-free prior on the indegree distribution of edges by estimating the ex-

pected distribution of incoming links to the genes and then solving an integer

programming problem to assign the number of regulators for each gene in

the network. The indegree distribution is estimated using a truncated scale

free distribution as shown in Eq 5.11

Psf (d) =

ck
−γin
min , if 1 ≤ d ≤ kmin

cd−γin , if kmin < d ≤ N

(5.11)

where Psf (d) is the probability of finding genes with indegree d, kmin is

a positive integer, N is the maximum indegree for the network, γin is the

scale free exponent for the distribution and c = (k1−γinmin +
∑N

d=kmin+1 d
−γin)−1.

Under such a probability distribution, number of genes with indegree d can

be estimated as Genes(d) = bpPsf (d)c.

To assign indegrees to each gene in the network, a cost is associated with

assignment of a particular indegree to a gene. To caluclate the cost for

assiging indegree d to gene j, multivariate regression is performed for gene j

assuming that it is regulated by d regulators. The d regulators are selected

based on the ordered values in the jth column of matrix SSE introduced in

Chapter 4. If σj is the list of potential regulators for gene j, then SSEσj(1)j ≤

SSEσj(2)j... ≤ SSEσj(p−1)j. σ ranks all the genes, except for gene j, in

decreasing order of their capability to regulate gene j. Given σ, a cost can

be assigned for every assignment of indegree to all the genes in the network.

The binary programming formulation can now be defined as follows.
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minimize
b

N∑
d=1

p∑
j=1

C(d, j)bdj

subject to

p∑
j=1

bdj = Genes(d), d = 1, . . . , N,

N∑
d=1

bdj = 1, j = 1, . . . , p,

bdj ∈ {0, 1}; d = 1, . . . , N ; j = 1, . . . , p

(5.12)

where C(d, j) is the cost associated with assigning indegree d to gene j, bdj is

a binary variable characterizing whether indegree d will be assigned to gene

j or not. Formulation 5.12 solves for the binary variables bdj, thus effectively

assigning indegrees to all the genes. The first constraint in 5.12 ensures that

the assignment of indegrees to the genes in the network follows the scale free

distribution introduced in Eq 5.11. The second constraint accounts for the

fact that each gene will have a unique indegree; for gene j only one of the

variables in bdj, d ∈ {1, 2, . . . , N} would be non-zero.

Cost C(d, j) is computed using multivariate regression. For indegree d and

gene j the following regression problem is solved.

uxj = a0j +
d∑

k=1

akj
uxσj(k) + εdj, u ∈ {1, 2, . . . , n} (5.13)

where uxj is the uth sample in the jth column of expression matrix X, a0k

and akj are the coefficients and εdj is the noise term. Eq 5.13 can be easily

solved using least squares regression. Further, sum of squared residuals and

sum of deviation squares can also be calculated for the model in Eq 5.13 as

follows.

Rdj =
n∑
u=1

( ˆuxj − uxj)
2 (5.14)
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Ddj =
n∑
u=1

( ˆuxj − x̄j)2 (5.15)

where Rdj is the sum of squared residuals, Ddj is the sum of deviation squares,

ˆuxj is the least squares estimate of uxj from Eq 5.13 and x̄j is the mean of

the expression values for gene j. The cost function can now be defined as

given in Eq 5.16.

C(d, j) = Rdjexp

(
−

Ddj

/
d

Rdj

/
(n− d− 1)

)
(5.16)

The cost function captures how well the expression of gene j is explained by d

regulators, thus quantifying combinatorial nature of regulation to some ex-

tent. The larger the cost function, the less likely it is that gene i would

be regulated by d regulators. The term (− Ddj

/
d

Rdj

/
(n−d−1)

) is equivalent to

the F-statistic for multiple linear regression that characterizes goodness of

fit. Thus, effectively, the cost function would be low when Rdj is low and

(− Ddj

/
d

Rdj

/
(n−d−1)

) is high. This would suggest that not only the d regulators

capture the variation in the expression of gene j well, also the model is

statistically relevant.

The binary problem 5.12 can be easily solved using any mixed integer pro-

gramming solver (MISP). The solution thus obtained gives the required gene

regulatory network. [40] does not use this inferred network directly, rather

employs it in a post-processing step to change the ordering of the edges in

the prediction list generated by the main technique introduced. Edges in

the inferred scale free network are upranked in the final predicted adjacency

matrix such that they are at the top of the list. If W is the matrix inferred

by the main method introduced in [40] and Wsf is the inferred scale-free

network, then the final prediction matrix is given as follows.

Ŵ = W + δ ∗Wsf (5.17)
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where Ŵ is the final predicted adjacency matrix, δ = max
d+1≤i≤p−1

max
1≤j≤p

Wij is

the amount by which the edges in Wsf are upranked in W .

5.3 Simulated annealing based inference of scale

free networks

The binary programming based inference of scale free networks introduced in [40]

and discussed in the previous section only infers a single binary network. More-

over, the inferred network is only used as a post-processing approach. Even the

performance benefit offered by the inferred scale free network is highly sensitive

to the selection of the parameters kmin, γin and N . No procedure has been offered

to make a selection of these parameters. Thus, the application of the prior is

extremely limited. In this section we devolop a simulated annealing based proce-

dure to circumvent the need to select the parameters. Further, we show that by

recording the frequency of occurence of each edge along the simulated annealing

chain, the prior now can be used as an independent network inference method. We

also adapt Eq 5.11 to include different priors. Specifically, we consider uniform,

binomial and exponential priors.

5.3.1 Formulation

The total cost function TC(X,Psf ) =
∑N

d=1

∑p
j=1C(d, j)bdj in Eq 5.12 represents

an estimate of the error inherent in the estimated network given data X and the

assumed degree distribution Psf . Thus, given two degree distributions P 1
sf and P 2

sf

parametrized by different parameters, we assume that the model with a lower total

cost function would be a better fit to the data. With this assumption we can now

propose a simulated annealing based approach to optimize the total cost function

TC(.). The proposed algorithm, which we call SAprior is given as follows.

1. Initialize the parameters.
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• Indegree distribution parameters - kcurmin = k0min, γcurin = γ0in, N cur = N0,

kpropmin = k0min, γpropin = γ0in, Nprop = N0.

• Binary programming parameters - TCcur = 0, TCprop = 0

• Simulated annealing parameters - T0 = 1, T = T0, Tstep = 0.1, nburnIn =

30, nIterations = 150, nIterT = 10, counter = 0

2. Repeat steps 3 to 9 nIterations number of times.

3. Update simulated annealing parameters.

• T = (T0 − Tstep)counter

• counter = counter + 1

4. Repeat steps 4 to 9 nIterT number of times.

5. Generate a resampled version of expression data Xresampled.

6. Generate new estimates for the indegree distribution parameters using the

proposal scheme - kpropmin = Proposalk(k
cur
min, T ), γpropin = Proposalγ(γ

cur
in , T ),

Nprop = ProposalN(N cur, T ).

7. If (kpropmin < klow)OR(kpropmin > khigh)OR(γpropin < γlow)OR(γpropin > γhigh)OR(Nprop <

Nlow)OR(Nprop > Nhigh) return to step 6. Otherwise, proceed to step 8.

8. Solve the optimization problem in 5.12 for both the current and proposed

estimates for the indegree distrbutions using the resampled data Xresampled

and update the corresponding cost functions TCcur and TCprop respectively.

9. if exp(− (TCprop−TCcur)
T

) > 1 accept the proposed degree distribution and

update the degree distribution parameters. Otherwise, generate a uniform

random number u ∈ (0, 1). If exp(− (TCprop−TCcur)
T

) > u accept the proposed

distribution and update the parameters otherwise reject it. If the proposed

distribution is accepted the parameters are updated as follows.

• Indegree distribution parameters - kcurmin = kpropmin , γcurin = γpropin , N cur =

Nprop
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If the proposed degree distribution is accepted and counter > nburnIn, save

the gene regulatory network associated with the accepted degree distribution.

With respect to the parameters in the algorithm, superscript cur identifies param-

eters for the current while prop for the proposed indegree distributions. Subcsripts

low and high represent lower and upper bounds on parameters respectively. De-

scription for the other parameters are as follows.

• T0 = Initial temperature for simulated annealing; T = Current temperature;

Tstep = Step by which the temperature decreases at every iteration.

• nburnIn = 30 is the number of burn-in steps after which the graphs in

the simulated annealing chain are recorded; nIterations = 150 is the total

number of outer iterations in the SAprior, nIterT = 10 is the number of times

the inner loop in SAprior is executed, counter = 0 is a running counter to

keep track of the number of outer iterations.

In addition to solving the binary programming problem, there are three other

crucial steps in SAprior - resampling the expression matrix, generation of a new

estimate for the indegree distribution and acceptance or rejection of the proposed

distribution. Next, we discuss these three aspects.

• Data resampling

Data resampling has been previously shown to improve the performance

of various network inference techniques [12, 43, 59]. Resampling aides in

making statistically stable estimates. Further, resampling adds variation to

the estimates made in different iterations. We found that the adjacency

matrix accumulated by looking at the frequency of occurence of each edge

along the simulated annealing chain was sparser without resampling. The

performance was also lower wihtout data resampling. Thus, we have included

the resampling step. In our experiments on the size 100 networks we found

that taking twice as many resamples, with replacemnt, as there are samples
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in the original expression matrix, gives a better performance. Thus, in all

our experiments we adopt this resampling strategy

• Proposing new degree distributions

In the binary formulation 5.12, the indegree distribution is contingent upon

three parameters kmin, γin and N . Thus, in SAprior to generate a new

estimate for the indegree ditribution, we need to generate estimates for kmin,

γin and N . For this purpose, we need proposal functions for each parameter.

For a given current value kcurmin, we generate kpropmin by uniformly sampling an

integer from the interval (kcurmin−1, kcurmin, k
cur
min+ 1). A similar startegy is used

for generating Nprop. For γin we use a gaussian proposal distribution centred

at (γcurin and having a variance equal to the current temperature.

• Acceptance of proposed indegree distribution

The central tenet of SAprior is that the total cost function in formulation

5.12 can be used as an objective function in a simulated annealing process.

Consequently, if the cost function for the proposed ditribution is lower than

that for the current distribution, the proposed distribution is accepted. Thus,

all proposed indegree distributions which have a better fit to the multivariate

regression model compared to the current distribution are always accepted.

While proposed distributions with a poorer fit are visited less often. Thus,

the networks visited in the simulated annealing chain can be aggregated to

give an estimate of the underlying gene regulatory network.

5.3.2 Network inference with SAprior

To gauge an estimate of the underlying gene regulatory network with SAprior,

we adopt two different strategies. The first is based on aggregation of all the

network along the simulated annealing chain. The second strategy uses SAprior

to augment an adjacency matrix inferred by any other network inference technique.

These strategies are discussed as follows.
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• Edge frequencies

In this work, the collection of all the points visited by SAprior is referred

to as the simulated annealing chain. If l represents the lth point in the

simulated annealing chain and Wl is the running adjacency or prediction

matrix, then we get the following update equation for Wl.

Wl = Wl−1 +W SA
l (5.18)

where W SA
l is the network from the accepted proposed distribution at point l

in the chain. Interestingly, W SA
l is binary and sparse, whereas Wl is neither.

Consequently, if Wl is normalized, it assigns to each edge in the network

a weight or probability of exitence. Thus, Wl can be used for performance

analysis within the present framework. It is worthwhile to note that a sim-

ilar strategy for aggregating multiple binary networks to generate weighted

predictions has been used by many methods before [43, 57, 58].

• Upranking

As previously discussed in Section 4.2, [40] uses an upranking strategy to

leverage the network inferred using formulation 5.12. We observe that this

strategy is not unique to the method introduced in [40]. Thus, using this

upranking strategy, we introduce a way of using SAprior to augment the

predictions made by any other inference technique. Given an adjacency ma-

trix WM predicted by method M and as before Wl is the running adjacency

or prediction matrix along the simulated annealing chain. Then the update

equation for Wl can be stated as follows.

Wl = Wl−1 + (WM + δ ∗W SA
l ) (5.19)

where, δ = max
d+1≤i≤p−1

max
1≤j≤p

WM
ij is the amount by which the edges in W SA

l

are upranked in WM . Thus, at every point l along the chain, some edges

in WM are upranked and the outcome is added to Wl−1. At the end, Wl
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can be normalized by the length of the chain. The final Wl has an intu-

itive interpretation; it is the average of all the upranked WM . Generally,

many resampling techniques resample the expression data and re-infer the

prediction matrix and use the average of all the inferred matrices for sta-

tistical stability. In the upranking strategy that we have used, rather than

re-inferring the networks from method M we have used resampling within

SAprior.

5.3.3 Incorporating complex combinatorial regulation

Inferelator [44] introduced a way to incoporate complex transcription factor inter-

action programs such as AND, OR and XOR in the network inference process.

The introduced encoding is purported to be able to extract true combinatorial reg-

ulation; such regulation involves transcription factors interacting with each other

to effect the regulation of the target gene. Since the methodology of [44] also

uses multiple regression framework, it is straightforward to include the complex

interaction term in SAprior.

For the purpose of illustraion, let us assume that d = 2, then incorporation of the

interaction term would modify Eq 5.13 as follows.

uxj = a0j +
2∑

k=1

akj
uxσj(k) + βmin(uxσj(1),

uxσj(2)) + εdj, u ∈ {1, 2, . . . , n}(5.20)

where β is the coefficient for the interaction term. Only second order interac-

tions have been considered. If d > 2, interactions can be included for all pair of

transcription factors. Thus, SAprior can be easily modified to include interaction

terms for transcription factors.
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5.4 Results and Discussions

We have conducted two sets of experiments with regards to this chapter. The

first set of experiments perform a comparative analysis of three degree distribu-

tion prior incorporating techniques. For this purpose we compare our developed

method SAprior -with edge frequency based aggregation against Sheridan sfprior

and GLASSO sfprior. For the next set of experiments, we study the effect of

SAprior with upranking strategy on 27 network inference methods. Next we dis-

cuss both the experimental setups.

5.4.1 Experimental setup 1: Comparison of scale free prior

methods

We have compared the performances of SAprior, Sheridan sfprior and GLASSO

sfprior using the 25, size 100 networks. SAprior has been used with four different

degree distributions, uniform, binomial, exponential and scale free, and these are

called, SAprior Uniform, SAprior rnd, SAprior exp and SAprior sf respectively.

Sheridan rndprior and GLASSO have also been included in the analysis to assess

the effects of adding scale free prior for Sheridan and GLASSO. We conducted both

global and local performance analyses on all these methods, which are outlined

next alongwith the resuls.

• Global Performance Fig. 5.1 shows the overall score averaged across all

25, size 100 networks. In terms of overall score, for all the prior incorporating

methods, scale free prior works the best. With regards to SAprior, the order

of performance for different priors in decreasing order is SAprior sf, SAprior

exp, SAprior rnd and SAprior Uniform. As expected, uniform prior has

significantly lower performance compared to the other priors. While the

difference in performance between exponential and binomial priors is the

least. In comparsion to Sheridan, SAprior has a slightly less increment
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in performance between binomial and scale free priors. GLASSO sfprior

exhibits the least improvement in performance. This might be due to the

fact that the base model for comparison here is l1 regularized GLASSO which

is itself sparse.

Fig. 5.1. Average Overall Score for studying scale-free priors.

The overall score averaged across the five network topologies, PIPO, DREAM4,
DREAM3, EIPO and EIPO Modular for studying scale-free priors.

All of the above observations are more clearly visible in the average precision-

recall curve for DREAM4 networks in Fig 5.2. SAprior sf lies above all

the priors. The large difference between uniform and the other priors is

quite evident. GLASSO sfprior dominates GLASSO up to a recall of 0.4,

after which the curves seem indistinguishable. For Sheridan, scale free prior

dominates for mid to high recall values whereas for low recall values binomial

prior seems to slightly outperform.

Interestingly, SAprior sf is the best performer among all the prior-based

methods. Whereas, it is overall the third best methods. It is evident from
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Fig. 5.2. Precision Recall curve for studying scale-free priors.

Precision recall curve averaged over the five DREAM4 networks for studying scale-free
priors.

Figs. 5.1 and 5.2 that SAprior sf outperforms Genie3 and TIGRESS, both

of which are among the state of the art methods for gene network infer-

ence [11, 12]. Though, SAprior sf has lower overall score than RegCorr

andRegMI. However, it can be seen from Fig. 5.2 that SAprior sf dominates

RegCorr for most except for small recall values. For small recall values,

SAprior, irrespective of the prior, has a flat curve not starting at the top left

corner. This has been a consistent observation across methods that use edge

frequency based aggregation. We see this behavior for Sheridan as well, and

in some cases for GLASSO and TIGRESS. Additionally, we believe SAprior

has potential for improvement since we have used a naive simulated anneal-

ing approach with unoptimized parameters. For instance, the number of

iterations used was only 150, and the time step was also huge.

• Effect on degree distribution - To assess the effect of adding scale free

prior on the estimation of indegree distribution, we examine the average
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degree crossings in Fig. 5.3, where we see that SAprior sf better estimates the

indegree distribution compared to all the other types of degree distributions.

Whereas, for the case of Sheridan, scale-free prior dominates for all the

indegrees except indegree 1, which is evident from Figs. 5.3.

Fig. 5.3. Degree Crossing for Indegree for studying scale-free priors.

Degree crossing averaged across all the networks for studying scale-free priors. Within
the context of the discussion in Section 2.3.2, with regards to degree crossing, a given
method’s version with scale-free prior is compared against the version without scale free
prior or with some other prior. Thus, with scale-free prior the method would be M1 and
without scale-free prior or with some another distribution the method would then be
M2. So, the conclusions regarding degree crossing from 2.3.2 would hold accordingly. A
value of p−1 for the degree crossing implies that M1 dominates M2. Any other positive
value means that M1 dominates M2 up to a degree equal to the degree crossing value
and after that M2 dominates M1. A negative value implies that M2 dominates method
M1 up to a degree equal to the absolute value of the degree crossing and after that M1

dominates. A value of −(p− 1) means that M2 completely dominates M1.

GLASSO sfprior has a rather limited effect however; it estimates only inde-

grees 1 to 3 better than GLASSO. However, if we observe the degree cross-

ings only for PIPO networks, which have both indegree and outdegree as

scale free, GLASSO sfprior now dominates GLASSO. For the DREAM3 and
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DREAM4 networks which have been extracted from known topologies of bio-

logical networks and might have exponential indegree distribution, GLASSO

sfprior has a limited capability of doing better than GLASSO. Interestingly,

for DREAM3 networks, after indegree 2 exponential prior performs better

than the scale free prior for SAprior. This network is expected to have ex-

ponential indegree and scale free outdegree. However, for EIPO and EIPO

Modular, SAprior sf mostly dominates SAprior exp. One potential reason

might be the deterministic nature of the degree distribution in Eq 5.11 and

the truncation of the distribution at a maximum degree of N . N is one of the

parameters being updated within the simulated annealing procedure, thus

might be adapted depending upon the indegree distribution of the under-

lying network. Therefore, long tails might be clipped when the underlying

network does not support them.

On outdegree distribution, SAprior sf and Sheridan sfprior seem to have a

restricted dominance Fig. 5.4. This is yet another evidence for the dilution

effect from indegree to outdegree. Both SAprior sf and Sheridan sfprior only

dominate till outdegrees 6 or 7 with strategy 2. GLASSO sfprior has the

opposite trend, where it dominates after outegree 5. However, if we look at

the degree crossings for the PIPO networks, GLASSO sfprior dominates till

outdegree 13, following a similar trend as SAprior sf and Sheridan sfprior.

The experiments on indegree and outdegree distributions suggest that the

prior introduced in [54], which has been implemented for GLASSO sfprior, is

not robust to asymmetry in the indegree and outdegree distributions of the

underlying network. It seems a reasonable obeservation, since this method

gives an undirected network. Interestingly, Sheridan sfprior, which was also

designed as an undirected method, seems more robust to the asymmetry in

the indegree and outdegree distributions of the underlying network.
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Fig. 5.4. Degree Crossing for outdegree for studying scale-free priors.

Degree crossing averaged across all the networks for studying scale-free priors. The
inference strategy is the same as described in Section 2.3 and the caption for Fig. 5.3.

• Effect on motif errors

Fig. 5.5 shows the change in bias for cascade and fan-out motif errors after

adding scale free prior. The cascade error is consistently reduced for all the

methods. Thus, incorporation of a scale free prior on the degree distribution

leads to a reduction in cascade related false positives. SAprior sf has fewer

fan-out erros compared to SAprior uniform and SAprior rnd. GLASSO

exhibits lower fan-out errors as well with the addition of the scale-free prior.

However, the fan-out error increases for SAprior sf against SAprior exp and

also increases for Sheridan sfprior.
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Fig. 5.5. Percentage Motif Bias for studying scale-free priors.

5.4.2 Experimental setup 2: SAprior upranking based com-

bination

Within this experimental setup, we compare 27 network inference methods with

and without SAprior upranking strategy. The 27 methods also include Sheridan

sfprior and Sheridan rndprior with strategy 1 from Chapter 4. We have also used

the version of SAprior augmented by the interaction term from Eq 5.20. Methods

augmented by SAprior with the interaction term have SA sf comb. appended at

the end of the name of the method.

• Global Performance Fig. 5.6 shows the overall score averaged across all

25, size 100 networks. The upranking strategy consistently leads to an in-

crease in performance for all the methods. The magnitude of this increment

decreases as the base performance of the method increases. This inverse

relationship suggests that the extra information afforded by the upranking

strategy using SAprior decreases for better performing methods since these
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methods might have higher intersection with the predictions of SAprior.

One of the interesting observations is that the performance increases even

for Sheridan sfprior and RegSheridan sfprior methods, which have already

incorporated prior information. For Sheridan sfprior this could be due to

the directed nature of the predictions from SAprior. For RegSheridan sf-

prior which has an associated sense of directionality as well, one possible

explanation could be that strategy 1 from 4 adds directionality without re-

gard for the degree distributions. Perhaps, SAprior is introducing a degree

distribution conscious sense of directionality.

Fig. 5.6. Average Overall Score for studying SAprior upranking strategy.

The overall score averaged over all the networks for studying the effect of SAprior
upranking strategy.

The effect of the upranking strategy is further visible in the average precision

recall curve for the DREAM4 networks in Fig 5.7a. The huge improvements

in performance is visible for most methods. Notably, for Sheridan rndprior,

the curve at low recall values has shifted higher, thus leading to an increase

in precision. As noted above, some methods show larger improvement in
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performance compared to the others. For instance, the curve for RegSheridan

sfprior shifts by a lesser amount than for MI, Lasso, TIGRESS, Sheridan

rndprior or Genie3.

(a)

Fig. 5.7. Precision Recall Curve studying SAprior upranking strategy.
(cont.)

Addition of the interaction term introduced in Eq 5.20, leads to small im-

provements for some of the networks while for most networks the difference

is visibly indistinguishable. Fig. 5.6 shows the score averaged across the

DREAM3 networks, where we see that the interaction term has a small

positive effect for Corr and Sheridan based methods. If we look closer at

the zoomed-in average precision recall curve for the DREAM4 networks in

Fig. 5.7b, the effect of the interaction term is clearly visible. For low recall

values there is an increase in precision for methods such as MI, RegMI and

Sheridan rndprior. However, the increment is not clearly observable in the

final score. This could be attributed to the naive application of the simu-

lated annealing strategy for SAprior. It might be the case that with a more
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(b)

Fig. 5.7. Precision Recall Curve studying SAprior upranking strategy.

(a) Precision recall curve with SAprior upranking averaged over the five DREAM4 net-
works; (b) Precision recall curve with SAprior with the interaction term and upranking
averaged over the five DREAM4 networks.

optimized simulated annealing procedure, the improvement in performance

due to the interaction terms is larger and thus conclusively affects the final

score.

• Estimation of Degree Distribution - For Majority of the methods, the

degree crossing is 11 or higher, Fig 5.8. Sheridan rndprior, Sheridan sfprior

and RegSheridan rndprior perform better over the entire range of indegrees

with SAprior. The degree crossing for CLR is extremely high suggesting

improved performance on the entire indegree range. Given that the per-

formance of all network inference methods deteriorates exponentially with

indegree, as seen in Chapter 3, we can conclude that the upranking strategy

aides in extracting the indegree distribution for all the inference methods.
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Fig. 5.8. Degree Crossing for Indegree for studying SAprior upranking
strategy.

The degree crossing averaged across all the networks for comparing methods with and
without SAprior upranking. Within the context of the discussion in Section 2.3.2, with
regards to degree crossing, a given method’s version with SAprior upranking is compared
against the version without the same. Thus, with SAprior uprankingthe method would
be M1 and without it would then be M2. So, the conclusions regarding degree crossing
from 2.3.2 would hold accordingly. A value of p− 1 for the degree crossing implies that
M1 dominates M2. A positive value means that M1 dominates M2 up to a degree equal
to the degree crossing value and after that M2 dominates M1. A negative value implies
that M2 dominates method M1 up to a degree equal to the absolute value of the degree
crossing and after that M1 dominates. A value of −(p − 1) means that M2 completely
dominates M1.

Outdegree crossing for all the methods is at outdegree 6 or 7, Fig. 5.9. The

dilution effect has again limited the effect on outdegree compared to indegree.

It has been shown in Chapter 2 that at higher outdegrees the dscore starts

to saturate at the level of random guessing. Thus, Fig. 5.13 suggests that

the upranking strategy increases the confidence for outdegrees which were

being predicted better than random guessing for the base methods.
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Fig. 5.9. Degree Crossing for Outdegree for studying SAprior upranking
strategy.

The degree crossing averaged across all the networks for comparing methods with and
without SAprior upranking. The inference strategy is the same as described in Sec-
tion 2.3 and the caption for Fig. 5.8.

5.5 Future Work

We have shown that even a naive application of SAprior could be a good network

inference method in isolation or in concert with other methods. This suggests

one obvious line of potential future work- optimizing SAprior with respect to the

involved parameters. In this regard, there are many parameters and settings that

could be altered and played with. One of the things that could be done is to find

ways to appropriately tune the values for the simulated annealing procedure. In

the current form, we have used extremely crude estimates for the temperature

parameters. Furthermore, the annealing process was stopped after a fixed number

of iterations rather than checking the solution for some kind of stability. Such

a stability criterion could be introduced to forego the need to select the number
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of iterations manually. Another area for improvement could be the proposal dis-

tributions for updating kmin, γin and N . Distributions with better properties for

our application could be found after trying combinations of different possibilites.

Even the total cost function TC(.) could be modified; potentially good cost func-

tions available in the literature could be used or new customized cost functions

could be designed. Lastly, in the current form, we had applied the combinatorial

interaction term for indegrees up to 5. As we have seen that the inclusion of the

interaction term has the potential for affording performance improvement in the

recall region, inclusion of the term for larger indegree terms could be explored.

Besides the implementational concerns, the important issue is the methodological

insights from the set of experiments that have been conducted. We have consis-

tently seen that the inclusion of a prior on the degree distribution aides in the

network inference task. However, the network inference task is still an unsolved

problem. Degree distribution is just one of the many complex structural properties

possessed by gene regulatory networks. Another similar property is the existence

of network motif [17, 18] and these motifs have certain distributional properties.

We already have included an approximate motif-based prior in a cursory manner.

The combinatorial interaction introduced in [44] and used in Eq 5.20 tries to im-

prove the methods’ capability to infer Fan-in motifs. Even without optimization

and limited implementation the term has proven to have potential.

This motivates the possibility of augmenting SAprior with other structural prop-

erties. We now propose a way of incorporating a cost-based constraint to ensure

that cascade motif erros are reduced in the inferred network. We follow the strat-

egy used in [39]. The method has been described in Chapter 3. The method uses

a downranking strategy on a matrix of predictions obtained from knockout data.

The predicted z-score matrix is appropriately thresholded to obtain a binary net-

work. Potential cascade error edges are identified by collapsing the binary network

to its condensation graph, and selecting the indirect edges for FFL type structures.

All the edges in the binary network which correspond to the edges selected in the
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condensation graph, are downranked in thee final adjacency matrix. This partic-

ular step is informed by the observaation that gene regulatory networks are likely

to have more cascade motifs than FFLs. We incorporate this scheme in SAprior

by modifying the cost function as shown in Eq 5.5.

ˆTC(.) = TC(.) + λcasc.
Edgindirect
EdgG

(5.21)

where ˆTC(.) is the final total cost function, EdgG is the total number of edges in

graph G obtained after solving the optimization problem in Eq 5.12, Edgindirect is

the number of indirect edges in G identified using the strategy introduced in [39]

and λcasc. is a constant. The additonal term in Eq 5.5 penalizes the number of

indirect edges for every edge in G. λcasc. controls the strength of the penalization;

larger the value of lambda, more heavily the indirect edges would be penalized and

vice-versa. The new cost function is expected to drive SAprior towards solutions

that have fewer number of indirect edges and thus lesser bias for cascade error.

Fig. 5.10 shows some preliminary results with this new cost function. We have

arbitrarily used a value of 10 for λcasc. here. It is evident that for DREAM4

and PIPO networks, performance increases in terms of average score. We futher

explore this improvement observed for DREAM4 networks in the average precision

recall curve shown in Fig. 5.10b. SAprior with the new cost function is refered to

as SAprior Downrank here. We can see that the curve for SAprior Downrank lies

above the curve for SAprior. Moreover, at low recall values, SAprior Downrank

starts at a higher precision value. These results suggest that the new cost function

has potential for augmenting the network inference task. Further experimentation

is required to strengthen these results.

Finally, we address the possibility of incorporating prior on both the indegree and

outdegree distributions. The framework used in Sheridan sfprior for including

the prior is easily generalizable to include the outdegree distribution as well [67].

Inspired by this observation and the performance of SAprior on the network in-

ference task, we propose a bayesian framework for imposing a scale free prior on
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(a)

Fig. 5.10. Overall Score and PR curve for SAprior Downrank. (cont.)

both the indegree and outdegree distributions. Based on the discussion given in

[67], the probability of any graph under a directed model could now be given as

shown in Eq 5.22

P (G) =
∏
ij∈E

(
1− (1− sisj)pK

) ∏
ij /∈E

(
1− sisj

)pK
(5.22)

where si =
OUT σ

−µout
i∑p

k=1
OUT σ

−µout
k

and sj =
INσ

−µin
i∑p

k=1
INσ

−µin
k

, µout is the Zipf exponent for the

outdegree distribution and µinis the Zipf exponent for the indegree distribution,

all the other terms retain their meanings from Eq 5.10. The exponent of the

scale free distribution can be estimated from the corresponding Zipf exponents

as γin = 1 + 1/µin and γout = 1 + 1/µout. Further, we introduce the likelihood

function as shown in Eq 5.23

P (X | G) ∝
p∏
j=1

exp

(
−
∑n

u=1(
uxj − a0j −

∑dj
k=1 akj

uxσj(k))
2

2noiseσj

)
(5.23)
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(b)

Fig. 5.10. Overall Score and PR curve for SAprior Downrank.

(a) The overall score for different topologies for comparing SAprior and SAprior down-
rank. (b) Precision recall curve averaged over five DREAM4 networks for comparing
SAprior and SAprior downrank.

where dj is the indegree of gene j under G and the rest of the variables and param-

eters retain their meanings from Eq 5.13. Eq 5.13 uses the PairWise Decoupling

property for the network and thus decomposes the problem into p multivariate

regression problems. Using the likelihood in Eq 5.23 and the prior in Eq 5.22,

we can obtain an estimate for the gene network by sampling from the posterior

using MCMC based sampling strategies. The likelihood can be obatined in closed

form at every step of the MCMC chain by assuming approrpriate priors on the

coefficients akj and noiseσj or using the maximum likelihood estimate against these

parameters as an approximation. Similar to Sheridan sfprior and SAprior an

adjacency matrix can be estimated by aggregating the networks obtained at each

point of the MCMC chain. Also, the obtained networks can also be combined with

other methods using the upranking strategy.
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Further, the PairWise Decoupling assumption can also be relaxed for Eq 5.23

and a full multivariate Gaussian noise model can be assumed. Another point of

departure from the method of Sheridan sfprior would be that there is no need to

ensure decomposability of the sampled graphs for this formulation.

5.6 Conclusion

We have given a brief overview of the state of some of the methods belonging to the

class of techniques that leverage knowledge about the degree distribution for the

network inference task. Adapting the framework proposed in one of the methods,

we have devised a simulated annealing based method for incorporating degree

distribution as a prior in the network inference task. Utilizing the metrics described

in Chapter 2, we have conducted a comparative analysis of two degree distribution

prior incorporating methods against our simulated annealing approach.

The results show that the scale-free distribution prior aides the inference task both

globally and locally. SAprior, Sheridan and GLASSO exhibit better AUPR and

AUROC values with the scale-free prior than the other priors. Inclusion of the

scale-free prior also helps with the extraction of the degree distribution. SAprior

sf dominates the other priors over the entire range of indegree. Sheridan sfprior

and GLASSO sfprior also dominate, but over a limited range of indegree. A sim-

ilar trend is seen with the outdegree distribution. Besides degree distribution,

the scale-free prior also reduces the cascade motif error. Our proposed method,

SAprior, outperforms the two other prior-based methods on 25 synthetically gen-

erated datasets. Further, on a breast cancer dataset, SAprior sf identifies a more

connected network compared to Sheridan. These results suggest that SAprior

needs to be extensively validated on experimental data.

We have also shown that the predictions from our simulated annealing based

method can be seamlessly aggregated with the predictions from any other method.

Such an aggregation has been shown to lead to performance enhancement for
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all the methods considered in this work. Even methods which already have the

scale-free prior included, exhibit an improvement in performance. These scale-free

methods infer an undirected network; thus, the improvement in performance with

SAprior could be accounted for by the directed nature of SAprior.

We have also proposed a framework for including local motif-inspired constraints to

the simulated annealing method. One of the ways of contraining the solution tries

to capture complex combinatorial regulation arising out of the interaction between

transcription factors. Such a methodology would essentially have a strong bias

for fan-out motifs. The other methodology tries to trade-off between cascade and

FFL motifs. Preliminary results for both these methodologies have shown promise.

Further research is required to establish the exact effect of these methodologies.

This chapter has thus shown that incoporating a prior on the degree distribution

does aid the network inference task. However, the network inference task is still

unsolved. Augmenting the scale-free prior with other structural properties might

further help to improve the performance. Thus, efforts need to be directed in

improving the already introduced frameworks for incorporating structural priors

and better methodologies need to be developed.
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Conclusion

The aim of the present work has been two fold. To situate methods with integrated

structural priors within the overall network inference framework and to conduct a

comparative analysis of these methods on a common platform. For the former, we

have indicated in Chapters 1 and 5 that subset of methods incorporating struc-

tural priors is quite small compared to the entire space of available methods. Most

of the available degree distribution based methods belong to the class of graphical

methods whether GGM or bayesian networks. Recently, some degree distribution

incorporating bayesian network methods have emerged [50]. On the other hand,

there have been many methods estimate GGMs with scale free degree distribution

prior. However, these have not been benchmarked on a common platform with the

most widely used network inference methods. Even the DREAM challenges have

no participants that use GGMs. One potential reason is the limitation to undi-

rected networks. Irrespective, these methods should be thoroughly benchmarked,

as they might offer useful insights. In this work, we have benchmarked two GGM

methods against some of the most widely used network inference methods. Fur-

ther, we have demonstrated that these methods could be used in combination with

other methods to offer high fidelity network predictions. In this work, we have

also developed a simulated annealing based method for incorporating scale free

degree distribution prior for network inference. Comparative analysis with GGM

based methods has shown that this method is a better performer.
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Another consistent theme in this study has been the importance of meta methods

which try to leverage the strengths of multiple methods. This ideology has been

repeatedly allured to in the DREAM challenges and leveraged by participants as

well [59]. We have introduced a general and simple stratgey for combining a pair-

wise regression based startegy with any other method. The results for this strategy

have shown promise for a certain class of methods. The results from the study

of this strategy have reaffirmed the tenet that meta-methods or combination of

multiple methods offer advantage in the inference task. The meta philosophy has

even been used with the scale free prior method we have developed. The strategy

for combining the scale free prior predictions with any other method is general-

izable to any MCMC or simulated annealing based method. For instance, the

upranking strategy of Chapter 5 can be easily used with the predictions generated

by Sheridan sfprior as well.

One of the cumulative effects of the study of structural priors alongside a gen-

eral analysis of network inference methods, has offered helpful insights. We have

identified two motif based frameworks available in the literature that can be eas-

ily incorporated with the degree distribution prior. One method captures complex

transcriptional control, which might induce a higher bias from Fan-out motifs. The

other tries to distinguish cascade motifs from FFLs. We have used these methods

with the simulated annealing based method we have developed. The results are

promising and need further experimentation for strengthing the inferences made.

This highlights meta analysis on the methodological insights; different methods

can potentially offer rich insights for each other. This has been instruemental in

the bayesian framework that we have proposed for incorporating both indegree

and outdegree distributions as prior. This framework presents potential direction

for future research.

Experimentation on true biological data is another line of future work. Synthet-

ically generated data offers great variability in assessing the performance of gene

network inference methods under different conditions. The insights gained are

also accurate since the underlying network is precisely known. However, given the

approximate nature of the expression data generating process, it is of paramount
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importance to finally test any network inference method on biological datasets

which have been consistently used by the research community. Within the context

of this work, we have tested strategy 1 introduced in Chapter 3 on one of the real

datasets from DREAM5 challenge. The scale free prior based methods, however,

have only been tested and benchmarked on synthetic networks. Thus, any future

work should quantify the performance of these methods on real biological data.

Finally, we end by coming to the question that motivated this work, ”Do struc-

tural priors, specifically scale free degree distributions, help with network inference

task?”. We have answered this question within a limited context. Scale free priors

indeed help with the network inference task; this answer is contingent upon the

inferences made on the synthetic datasets being generalizable to larger, real bio-

logical networks. Further, there is a plethora of interwined questions that need to

be explored. Scale free degree distribution is not the only property exhibited by

gene regulatory networks. These networks have hierarchical modularity, exhibit

motif structures, are highly robust and have other interesting properties. Another

important question that needs to answered is whether a prior only on the degree

distribution is sufficient to accomplish the inference task. It does not seem likely.

It has been shown that the commonly used preferential attachment model for net-

work growth might not be sufficent to capture the distribution of various motifs

in the graph. We might need growth models that leverage motifs as primary units

rather than individual genes. Within this context, the present work has made a

small contribution by discussing the importance of including structural priors in

the network inference task. Thus, future efforts should aim at working towards a

more holistic approach by considering different structural properties in a collective

manner for the network inference task.
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Method Abbreviations

Method Abbreviation
Correlation Corr
Correlation with [34] Corr CLR
Correlation with [36] Corr MRNET
Correlation with [35] Corr ARACNe
Mutual Information MI
Mutual Information with [34] CLR
Mutual Information with [36] MRNET
Mutual Information with [35] ARACNe
[51, 52] GLASSO
[51, 52] with [54] GLASSO sfprior
[57] with scale-free prior Sheridan sfprior
[57] with binomial prior Sheridan rndprior
[40] RegCorr
[40] with Mutual Information RegMI
[58] Lasso
[43] TIGRESS
[41] Genie3

Table 1: Method Abbreviations.
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Method Abbreviation
Correlation RegCorr
Correlation with [34] RegCorr CLR
Correlation with [36] RegCorr MRNET
Correlation with [35] RegCorr ARACNe
Mutual Information RegMI
Mutual Information with [34] RegCLR
Mutual Information with [36] RegMRNET
Mutual Information with [35] RegARACNe
[51, 52] RegGLASSO
[51, 52] with [54] RegGLASSO sfprior
[57] with scale-free prior RegSheridan sfprior
[57] with binomial prior RegSheridan rndprior
[58] RegLasso
[43] RegTIGRESS
[41] RegGenie3

Table 2: Method Abbreviations with stratgey 1 in Chapter 4.

Method Abbreviation
[51, 52] GLASSO CLR
[51, 52] with [54] GLASSO sfprior CLR
[57] with scale-free prior Sheridan sfprior CLR
[57] with binomial prior Sheridan rndprior CLR
[58] Lasso CLR
[43] TIGRESS CLR
[41] Genie3 CLR

Table 3: Method Abbreviations with stratgey 2 in Chapter 4.

Method Abbreviation
SAprior with Uniform prior SAprior Uniform
SAprior with binomial prior SAprior rnd
SAprior with exponential prior SAprior exp
SAprior with scale-free prior SAprior sf

Table 4: Method Abbreviations with SAprior in Chapter 5.
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Software Implementation of

Methods

Method Software Author
Correlation R -
Mutual Information R – Infotheo package -
CLR R – minet package [68]
ARACNe R – minet package [68]
MRNET R – minet package [68]
Lasso R – glmnet package [69]
TIGRESS R Adapted from [43]
GLASSO R – glasso package [51]
GLASSO sfprior R Implemented as part of this work
Sheridan C++ [57]
Genie3 R [41]
RegCorr R Implemented as part of this work
RegMI R Implemented as part of this work
SAprior C++ Implemented as part of this work

Table 5: Details for softwares and packages used for implementing
the different methods.
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