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Reverse engineering the circuitry of biology

LIFE

A GENE REGULATORY NETWORK

Biological cells are essentially bags of
interacting genes/proteins, which
combine to carry out the various
processes of life

Given experimental data about how the
concentration levels of proteins
respond to various kinds of stimuli, can
we try to recover the relationships of
regulation and control between
different genes/proteins?

This can be thought of as learning the
structure of a dynamical system, given
some input/output characteristics

We are looking at a range of
approaches for mathematically
modelling and learning these regulatory
networks, such as Petri Nets, ODEs,
and Markov Nets



Challenges To Address

= Scientific

= To understand cellular circuitry, we need to look at
dynamics and control in the interactions between
genes/proteins: not merely static networks

= Regulation and information flows; how systems-level
behaivour emerges from individual components

= Technical

= Much work on gene regulatory networks; but hard to
choose from a plethora of models, as data leaves the
problem underspecified

= Integrating gene regulatory networks with protein
interaction networks

= Medical/Sociological

= Feeding back into wet lab and medical applications. |
plan to collaborate with experimentalists at JINU/NCBS,
focusing on under-studied organisms such as the
amoebiasis parasite E. histolytica (responsible for
~100,000 deaths/year)



ODE-based model

(Bonneau et al., Cell 2007)

y

_BZ: ifmin(y)c::BZc:max(y)
g(BZ)=<max(y): ifBZ::max(y)
_min(y): ifﬁZ{min(y)

Genes clustered first, using domain knowledge like protein-
protein interactions



Edgewise priors

[Greenfield et al. 2013]
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Biological network structure

Differing network features
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Biological network structure

Density-controlled
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Biological network structure

Size-controlled
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Other modelling approaches

= Extended Petri Nets [Durzinsky et al.]
= Markov Logic Networks
= Bayesian Networks

How can prior knowledge of higher-level network
structure (beyond edges) be incorporated?
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