
Distributed Implementation of Latent Rating Pattern Sharing based Cross-domain
Recommender System Approach

Anil Kumar∗, Vikas Kapur∗, Apangshu Saha∗,
Rajeev Gupta∗ and Arun Singh∗

∗Samsung Research and Development Institute Delhi
Sec.126, Noida, UP, India

e-mail: anil.k06@samsung.com

Santanu Chaudhury†and Sumeet Agarwal†
†Indian Institute of Technology

Hauz Khas, Delhi 110016, India

Abstract—Latent rating pattern sharing based approaches
for cross-domain recommendations can alleviate the data
sparsity problem by pulling the knowledge available from
other domains and are faster in prediction; however since the
prediction quality depends on number of chosen user and item
class sizes for given data-set, the model training time becomes
prohibitively large even for medium size data-sets. In this paper,
we propose a MapReduce based distributed implementation
of the cross domain recommendation algorithm. Our imple-
mentation has the capability to run on modern distributed
computing frameworks, such as Hadoop and Twister, that
utilize commodity machines. The experimental results show
that the training time increases only linearly with user and
item class sizes when compared to the exponential increase in
case of its sequential counterpart.

Keywords-Cross-domain recommendation System Scalabil-
ity; Big Data, Flexible Mixture Model; Transfer Learning;
MapReduce

I. INTRODUCTION

In today’s era of information technology, user preference
information is widely available but scattered in various
domains such as TV apps, books, movies and electronics
gadgets. The joint analysis of these preferences can help
uncover the key relationship among users, items and their
features. It also gives the opportunity to utilize the knowl-
edge gained in one domain to improve the recommendation
quality in other domains where preference information is
sparse; this process of knowledge transfer is classified as a
cross-domain recommendation [1]. However in most cases,
these domains are usually mutually exclusive. The users,
items and their features in one domain may not be same in
other domains. As a result, it is difficult to directly link users,
items or features between different domains. One approach
to tackle such cases is through implicit linkage established
via sharing of common cluster level latent rating patterns
[2], [3] and [4].

In [2], Li et al. constructed a codebook by co-clustering
the user-item ratings of source domain and then the target
domain is reconstructed using the codebook to fill the
missing entries. This approach uses hard clustering that leads
to performance degradations. This problem is addressed

using Flexible Mixture Model (FMM) in Rating-Matrix
Generative Model (RMGM) [3]. RMGM learns the shared
latent rating patterns in terms of latent user and latent
item class parameters. Thereafter, these shared latent rating
patterns are used to transfer the knowledge learned from the
source domain to the target domain. RMGM simultaneously
improves prediction performance in sparse domains. Since
rating information is aggregated and analyzed, training times
become prohibitively large even for medium-size data-sets.
In this paper, we implement a distributed implementation of
RMGM algorithm, which can run on a cluster of commodity
machines thus speeding up the training process without
compromising prediction accuracy. The prediction process
is also distributed to speed up the prediction in all involved
domains.

The rest of the paper is organized as follows: Section 2
provides details of the RMGM algorithm; Section 3 presents
our distributed implementation of RMGM algorithm using
MapReduce; and Section 4 presents experimental evaluation
of our distributed implementation on real-world data-sets.
Finally, Section 5 concludes the paper.

II. PRELIMINARIES

The rating pattern sharing based cross-domain recom-
mendation approach RMGM [3] groups users and items
separately based on ratings given by users to different items.
It allows users and items to belong to different classes
simultaneously. The model assumes that there are two latent
variables: user class ZU and item class ZI . Fig. 1 shows
the graphical representation of FMM [5], RMGM extends
FMM for grouping the users and items simultaneously. In
this figure shaded variables user u, item i and corresponding
rating r corresponds to the observed variables, while non-
shaded variables ZI and ZU corresponds to item and user
class latent variables. Table I provides the definition of
variables used to describe the model.

The joint probability P (i, u, r) of the user u, item i and
rating r is given by equation (1) which requires the values
P (Zk

U), P (Zl
I), P (u|Zk

U), P (i|Zl
I) and P (j|Zl

I , Z
k
U) model

Table I
DEFINITIONS OF SYMBOLS

Symbol Description
K Number of user classes

L Number of item classes

T Total number of ratings in all domains

M Total number of users in all domains

N Total number of items in all domains

R Rating scale 1...R with assumption that the rating
scale is same in all domains

P (Zk
U) Prior probability for user class k: (1 ≤ k ≤ K)

P (Zl
I) Prior probability for item class l: (1 ≤ l ≤ L)

P (u|Zk
U) Conditional probability of a user u given the user

class Zk
U :(1≤ u ≤M)

P (i|Zl
I) Conditional probability of a item i given the item

class Zk
I :(1≤ i ≤ N)

P (r|Zl
I , Z

k
U) Conditional probability of a rating r given the item

class Zl
U and user class Zk

U :(1 ≤ r ≤ R)

Figure 1. Graphical representation of FMM

parameters. These parameters are learned using training
data-set.

P (i, u, r) =∑
Zl

I
,Zk

U

P (Zl
I)P (i|Zl

I)P (Zk
U)P (u|Zk

U)P (r|Zl
I , Z

k
U) (1)

The overall rating of test user u for item i is predicted using
equation (2).

Pred(u, i) =
∑
r

r
P (u, i, r)∑
r′ P (u, i, r′)

(2)

Learning Algorithm: All the model parameters P (Zk
U),

P (Zl
I), P (Uj |Zk

U), P (Ij |Zl
I), P (Rj |Zl

I , Z
k
U) are estimated

using Expectation Maximization (EM) [6] algorithm by
maximizing the likelihood of the observed ratings. Following
steps as described in [3] are performed iteratively until the
solution converges:

1) E-Step: Calculate rating posterior probabilities using
the equation (3), where t is the rating index in training

Figure 2. AGGREGATED DOMAINS

data-set.

P (Zk
U , Z

l
I |ut, it, rt) =

P (ut|Zk
U)P (Zk

U)P (it|Zl
I)P (Zl

I)P (ut|Zk
U)P (rt|Zk

U , Z
l
I)∑K,L

k=,l=1 P (ut|Zk
U)P (Zk

U)P (it|Zl
I)P (Zl

I)P (rt|Zl
I , Z

k
U)

(3)

2) M-Step: Update the model parameters P (Zk
U),

P (Zl
I), P (u|Zk

U), P (i|Zl
I ,), P (r|Zk

U , Z
l
I) according

to the equation (4)-(8) respectively.

P (Zk
U) =

∑T
t=1

∑L
l=1 P (Zk

U , Z
l
I |ut, it, rt)

T
(4)

P (Zl
I) =

∑T
t=1

∑K
k=1 P (Zk

U , Z
l
I |ut, it, rt)

T
(5)

P (u|Zk
U) =

∑T
ut∈u

∑L
l=1 P (Zk

U , Z
l
I |ut, it, rt)

T × P (Zk
U)

(6)

P (i|Zl
I) =

∑T
it∈i

∑K
k=1 P (Zk

U , Z
l
I |ut, it, rt)

T × P (Zl
I)

(7)

P (r|Zk
U , Z

l
I) =

∑T
rt∈r P (Zk

U , Z
l
I |ut, it, rt)∑T

t=1 P (Zk
U , Z

l
I |ut, it, rt)

(8)

Note that all these equations require the sum-
mation of various rating posterior probabilities
P (Zk

U , Z
l
I |ut, it, rt) which provides opportunity to

distribute computation and storage to make the train-
ing algorithm more scalable.

Cross-domain setting: For cross-domain recommendation
multiple domains are aggregated diagonally into a single
data-set as shown in Fig. 2. Users u1 . . . u4 rated movies in
movie domain and users u′

1 . . . u
′
5 rated books in books do-

main. Both rating matrices are aggregated, model variables
are learned for given rating data-set and missing ratings are
predicted using model parameters.

Li et al. [3] have demonstrated that the aggregation of
multiple domains improve the recommendation quality in

the domain in which the data is sparse. The model was
trained using EM which is an iterative process as discussed
above and takes lot of time in training in case of big training
data especially when user and item count is very large but
rating matrix is sparse. All the model variables P (Zk

U),
P (Zl

I), P (ut|Zk
U), P (it|Zl

I ,), P (rt|Zk
U , Z

l
I) and posterior

probabilities are tightly coupled and one depends on other
in each iteration. Therefore, it impossible to distribute the
iterations for scalability purpose but the distribution of
computation and storage is possible within iterations.

We improved the algorithm in terms of scalability
by distributing the EM computation through MapReduce
paradigm. MapReduce is a distributed programming frame-
work for developing applications to process vast amount
computation and storage in a scalable and reliable manner
using commodity machines [7]. The next section describes
the distributed implementation of rating pattern sharing
based cross-domain recommendation approach.

III. THE DISTRIBUTED IMPLEMETATION

The distributed implementation consists of a series of
steps with one or more MR jobs chained together, each of
which performs a specific operation. The complete model
including initialization, training and prediction is distributed
in various steps of implementation. The sequential imple-
mentation of the same algorithm is available at RMGM1 and
we use this sequential implementation to verify the results
obtained in distributed implementation. The input, output
and purpose of each step in distributed implementation is
described as follows:

Step-1: Initialize Rating Posterior and Rating Matrix:

In this step rating posterior matrix is initialized for each
rating record in training data-set. The initialization is carried
out in following steps:

1) Initialize Rating Posterior: Fig. 3 depicts the flow
for initializing the rating posterior matrix [user class k,
item class l, pIdx, pVal]. User class and item class ids k
and l are randomly generated for each observed rating
record with index pIdx. The value pVal of posterior
probability P (Zk

U , Z
l
I |ut, it, rt) is set to 1 initially

indicating that each user, item and rating belongs
to only single user and item class mixture but this
value will get updated later in E-step as users and
items may belong to multiple classes simultaneously.
A MR job is executed which creates the sparse matrix
representation of randomly created rating posterior
matrix with user class id kas a Key and remaining
part as a Value as shown Fig. 3. The rating posterior
probabilities are distributed in sequence file as it will
be used as an input to other MR jobs.

1https://sites.google.com/site/libin82cn/home/files/rmgm-em-
codes.zip?attredirects=0

Figure 3. Initializing Rating Posterior

Figure 4. Initializing Rating Matrix

2) Initializing Rating Matrix: Fig. 4 depicts the flow
for initializing the rating matrix. Rating matrix map
file is created corresponding to the rating matrix. This
map file contains the mapping of posterior index with
rating record as shown in Fig. 3. This map file is
used in step 2 to access rating record information by
posterior index pIdx. This step also creates sequence
file containing map file data information which is used
later as a MR job input.

Step-2: EM Iterations

EM steps are executed iteratively to learn the values of
P (Zk

U), P (Zl
I), P (u|Zk

U), P (i|Zl
I ,), P (r|Zk

U , Z
l
I) model

Figure 5. M-step

parameters. These steps are repeated again and again until
the algorithm converges.

M-step: Fig. 5 shows the MR operations performed in M-
step to update the model parameters from sparse posterior
matrix and rating matrix:

1) Creating P (Zk
U) using matrix equation (4) and P (Zl

I)

matrix using equation (5) matrices. In this step four
MR jobs are executed:

a) Create PosteriorSumMatrix Job
Input: Sparse representation of posterior matrix
(created in Step 1).

Output: Sparse user-item class matrix contain-
ing posterior sum.

b) Create PosteriorSumMatrixTanspose Job
Input: Sparse user-item class matrix containing
posterior sum.
Output: Sparse item-user class matrix contain-
ing posterior sum.

c) Create P (Zk
U)

Input: Sparse user-item class matrix containing
posterior sum.
Output: P (Zk

U) matrix
d) Create P (Zl

I) Job
Input: Sparse item-user class matrix containing
posterior sum.
Output: P (Zl

I) matrix

2) Creating P (u, ZUk) (using (5)), P (i|ZI l), (using
equation (6))) and P (r|Zk

U , Z
l
I) (using (7)) matrices

In this step four MR jobs are executed:

a) Create SumPosterior matrix of user, item and
rating
Input: Sparse representation of posterior matrix
(created in Step1-a)
Output: User Posterior Sum Matrix, Item Pos-
terior Sum Matrix and Rating Posterior Sum
Matrix
Description: Each Mapper reads a row of input
posterior matrix, it then queries the Rating map
file (created in Step1-b), to get the rating record
corresponding to posterior index. It then writes
multiple outputs corresponding to each user, item
and rating. Reducer accumulates the posterior
sum corresponding to each user, item and rating.

b) Create P (i|Zk
U) Job

Input: User Posterior Sum Matrix, Global Poste-
rior Sum Matrix (Created in Step 2: M-step–a-i)
Output: Sparse P (j|Zk

U) Matrix
c) Create P (Ij |ZI) Job

Input: Item Posterior Sum Matrix, Global Poste-
rior Sum Matrix (Created in Step 2: M-step–a-i)
Output: Sparse P (i|Zl

I) Matrix
d) Create P (r|Zk

U , Z
l
I) Job

Input: Rating Posterior Sum Matrix, Global
Posterior Sum Matrix (Created in Step 2:
M-step–a-i)
Output: Sparse P (r|Zk

U , Z
l
I) Matrix

Figure 6. E- step

E-step: Fig. 6 describes the MR operation for E-steps to
update the rating posterior matrix:

1) Creating intermediate matrix Temp from P (Zk
U) and

P (Zl
I) matrices. In this step two MR jobs are exe-

cuted:
a) Transpose P (Zk

U) Matrix Job

Input: Sparse P (Zk
U) matrix

Output: Sparse transposed P (Zk
U) matrix.

b) Matrix Multiplication Job
Input: Sparse transposed P (Zk

U) matrix and
sparse P (Zl

I) matrix.
Output: Sparse Temp matrix. Generated as a
result of distributed multiplication of transposed
P (Zk

U) and P (Zk
I) matrices.

2) Creating rating posterior matrix from Temp,
P (u|Zk

U), P (i|Zl
I), P (r|Zk

U , Z
l
I) matrices. In this

step one MR jobs is executed:
a) To Rating Posterior Matrix Job

Input: Rating sequence file (Created in Step1-b),
Temp and P (r|Zk

U , Z
l
I) (Loaded in Job setup),

P (u|Zk
U) and P (i)|Zk

I) (Map file queried per
userid or itemid)
Output: Sparse rating posterior matrix

Step 3: Creating intermediate matrices for prediction

Fig. 7 demonstrates the MR jobs for creating intermediate
matrices: user membership, item-membership matrices using
five learned model parameters for predicting the ratings.

1) Create Intermediate matrix from P (r|Zk
U , Z

l
I) matrix

In this step one MR jobs is executed:
2) Create Intermediate Matrix Job

Input: P (r|Zk
U , Z

l
I) matrix (Created: M-step)

Output: Sparse Intermediate matrix
3) Create user membership from P (u|Zk

U), P (Zk
U)

matrices. In this step one MR jobs Create
UserMembership Job is executed:

Create UserMembership Job
Input: P (Uj |ZU) matrix (Created M-step) and
P (ZU) matrix (Created in M-step)
Output: Sparse UserMembership matrix

4) Create item membership from P (i|Zl
I), P (Zl

I)
matrices. In this step one MR job Create Item
Membership Job is executed:
Input: P (i|Zl

I) matrix (Created in M-step) and P (Zl
I)

matrix (Created in M-step)
Output: Sparse ItemMembership matrix

Step 4: Generating recommendations using equation (1) and
(8)

Fig. 8 depicts the flow for generating recommendations.
The user-membership matrix, intermediate matrix and
item-membership matrix are multiplied through distributed
MR jobs to produce user-item prediction matrix. Finally
Filter MR job is executed which takes user-item prediction
matrix and original rating matrix (Created in Step 1-b) as
input and filter the contents already consumed by users
from user-item prediction matrix.

IV. EXPERIMENTS

In this section we examine how our proposed distributed
implementation behaves on real world data-set and compare
its performance with the sequential version of RMGM.
Experimental Setup: Experiments were performed using
seven nodes, each on a separate commodity machine in the
Hadoop cluster. Each machine was equipped with Intel Core
i3-2100 CPU@ 3.10 GHz, 64 bit. 8 GB RAM. The total
capacity of HDFS was 2.42 TB and the HDFS block size
was 67 MB. Both versions of the RMGM algorithm were

Figure 7. Creating intermediate, user-membership, item-membership
matrices

implemented in Java with the use of efficient data structures
for time and memory usage.
Data-set: Experiments were conducted on a combined
data-set containing movies and books domain data. The
movie domain data-set is obtained from the Movielens2and
book domain data-set, Book-crossing3. The movie data-set
comprises 100,000 ratings on scale 1-5 provided by 943
users on 1682 movies while Book Crossing data-set
comprises 67,552 ratings on scale 1-10 provided by 1395
users on 10279 books. The book crossing data-set was
converted from rating scale 1-10 to scale 1-5 for the
experiment. Therefore total of 167,552 ratings were used
for training and testing. 20 percent data was randomly
chosen for testing and remaining data was used for training.

Experimental Results
Fig. 9 shows the run time in distributed and sequential

2http://grouplens.org/datasets/movielens/
3http://www.informatik.uni-freiburg.de/cziegler/BX/

Figure 8. Generating recommendations using intermediate, user-
membership, item-membership matrices

implementation for first two iterations of the EM algorithm
with different user and item class sizes on same cross domain
data-set. The algorithm converges on different iteration for
different user and item class sizes, so we choose to use
time for first two iterations to demonstrate the training time
saved with the proposed distributed implementation. For
smaller class sizes such as 50 for both user and item class
size, sequential implementation performed slightly better in
terms of training time because of I/O overhead in distributed
implementation on Hadoop. But the prediction accuracy in
terms of Root Mean Square Error (RMSE) was only 0.9919
after convergence as depicted in Fig. 10. As we increased the
class sizes(where both user and item class sizes were 110),
the RMSE improved to 0.9227 and training time for two
iterations also reduced to 6.32 hours, while the sequential
version took 122.54 hours. The experiment with user and
item class sizes 110 could not run on sequential version due
to memory limitation.

Figure 9. Sequential/Distributed run time vs user and item class sizes for
for first two iterations

Figure 10. RMSE vs user and item class sizes (Optimal RMSE 0.92 is
achieved with user and item class sizes 110

As we can see in Fig. 9, the distributed version started
performing better with increased user and item class sizes.
At the same time the completion time increased linearly
when compared to the exponential increase with the sequen-
tial version. This happened because MR jobs are distributed
with class ids, it means bigger is the class size, the more is
the distribution of storage and computation which results in
lesser run time.

Fig. 11 shows the run time for various number of nodes in
the Hadoop cluster number of node in Hadoop cluster with
[110, 110] user and item class size. As we can observe, the
performance improvement is proportional to the number of
nodes in the cluster but the run time doesnt improve much
after 4 nodes.
Proof of correctness: The distributed implementation parti-
tioned the data and performed the computation on individual
parts before aggregating them into final result. The Rating
Posterior matrix is updated in E-step in both sequential
and distributed implementation. In one experiment we stated
with same configuration: ratings dataset, number of user and
item cluster sizes and Rating Posterior matrix. After each

Figure 11. Run time vs Hadoop Cluster size (Run time for first two
iterations with user and item class sizes as 110

iteration updated Rating Posterior matrix was same in both
sequential and distributed implementation. This confirms
that the distributed did not lose any information.

V. CONCLUSION

The proposed distributed approach solved the problem
of scalability over sequential approach by distributing the
RMGM into a series of steps with one or more MapReduce
jobs chained together, each of which performs a specific
operation. The computation as well as storage is distributed
as map and reduce phases of MapReduce. The approach used
in sequential implementation was not scalable because with
the increase in user and item class sizes, its computation time
was growing exponentially even with medium size data-set.
Therefore the proposed distributed implementation can act
as scalable algorithm for latent rating pattern sharing based
cross-domain recommendations where multiple domain data
leading to large data-set is involved in learning.

REFERENCES

[1] I. Fernndez-Tobas, I. Cantador and M. Ka, ”Cross-domain
recommender systems: A survey of the state of the art.,” in 2nd
Spanish Conference on Information Retrieval (CERI 2012),
2012.

[2] B. Li, Q. Yang, and X. Xue, Can Movies and Books Collabo-
rate? Cross-Domain Collaborative Filtering for Sparsity Reduc-
tion, Proc. 21st International Joint Conf. Artificial Intelligence,
July 2009.

[3] B. Li, Q. Yang, and X. Xue, Transfer Learning for Collabo-
rative Filtering via a Rating-Matrix Generative Model, Proc.
26th International Conf. Machine Learning, June 2009.

[4] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari and J. Guo, ”Cross-
Domain Recommendation via Cluster-Level Latent Factor
Model.,” in ECML/PKDD, 2013.

[5] S. Lu and J. Rang, ”Flexible Mixture Model for Collaborative
Filtering,” in 20th Intl Conf. Machine Learning, 2003.

[6] D. A., L. N. and R. D., ”Maximum Likelihood from incomplete
data via the EM algorithm,” Journal of the Royal Statistical
Society, vol. B, no. 39, pp. 1-38, 1977.

[7] J. Dean and S. Ghemawa, ”MapReduce: simplified data pro-
cessing on large clusters,” Communications of the ACM, vol.
51, no. 1, pp. 106-113, 2008.

