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Abstract

Background

 It has been apparent in the last few years that small non coding RNAs (ncRNA) play 

a very significant role in biological regulation. Among these microRNAs (miRNAs), 

22-23 nucleotide small regulatory RNAs, have been a major object of study as these 

have been found to be involved in some basic biological processes. So far about 706 

miRNAs have been identified in humans alone. However, it is expected that there may 

be many more miRNAs encoded in the human genome. In this report, a “context-

sensitive” Hidden Markov Model (CSHMM) to represent miRNA structures has been 

proposed and tested extensively. We also demonstrate how this model can be used in 

conjunction with filters as an ab initio method for miRNA identification.

Results 

The probabilities of the CSHMM model were estimated using known human miRNA 

sequences. A classifier for miRNAs based on the likelihood score of this “trained” 

CSHMM  was  evaluated  by:  (a)  cross-validation  estimates  using  known  human 

sequences, (b) predictions on a dataset of known miRNAs, and (c) prediction on a 

dataset of non coding RNAs. The CSHMM is compared with two recently developed 

methods,  miPred and CID-miRNA.  The results suggest that the CSHMM performs 

better  than  these  methods.  In  addition,  the  CSHMM was  used  in  a  pipeline  that 

includes  filters  that  check  for  the  presence  of  EST matches  and  the  presence  of 

Drosha cutting sites. This pipeline was used to scan and identify potential miRNAs 

from the human chromosome 19. It was also used to identify novel miRNAs from 

small RNA sequences of human normal leukocytes obtained by the Deep sequencing 

(Solexa) methodology.  A total  of 49 and 308 novel miRNAs were predicted from 
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chromosome 19 and from the small RNA sequences respectively.

Conclusions

The  results  suggest  that  the  CSHMM  is  likely  to  be  a  useful  tool  for  miRNA 

discovery  either  for  analysis  of  individual  sequences  or  for  genome  scan.  Our 

pipeline, consisting of a CSHMM and filters to reduce false positives shows promise 

as an approach for  ab initio identification of novel miRNAs.

Background

Several classes of small “non-coding RNA” (RNA sequences which are not translated 

to proteins) have been discovered in the last decade and have been found to play a 

central role in biological processes. One such class of non-coding RNA is microRNA 

(miRNA). Mature miRNA sequences are single stranded, typically 20-25 nucleotides 

long and encoded as a precursor molecule of about 60-120 nucleotides (in humans). 

These precursors are derived from processing of a pri-miRNA (usually in kilobases) 

by a ribonuclease, such as Drosha. Pre-miRNAs are also further cleaved to generate 

active mature miRNA with the help of Dicer.  

Computational  approaches  to  identify  miRNAs  are  based  on  major  properties  of 

previously identified miRNAs, such as presence of a hairpin-shaped stem loop like 

secondary structure, evolutionary conservation and low minimum free energy.  Most 

of these tools share the same overall strategy but use different approaches [1]. Some 

of the tools, such as  MiRscan [2], use a filtering criteria to pick out pre-miRNAs 

from the  initial  set  of  candidate  stem-loops  based  on  GC content,  minimum free 

energy and structural filters. This fails to identify all the known miRNAs with a high 

level  of  accuracy.  “Homology-based”  approaches  exploit  information  from  both 

sequence and structure to find new members of known miRNA families (homologous 
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miRNAs)  but  cannot  detect  new  miRNAs.  Examples  of  these  are  profile  based 

ERPIN [3] and MiRAlign [4]. ProMiR [5] a probabilistic co - learning method that 

relies on the paired HMM, models characteristics of the stem portion of the stem–loop 

viewed as a paired sequence. It uses a set of additional filters like comparison to other 

vertebrate genomes. A number of SVM-based machine learning methods have also 

been developed for prediction of miRNAs. Triplet-SVM [6] recognizes pre-miRNAs 

based on the presence of small (3 nt) structural features. SVM-based MIRfinder [7] 

was  designed  for  analyzing  genome-wide,  pair-wise  sequences  from  two  related 

species  and  RNAmicro  [8] uses  twelve  different  features/descriptors,  such  as 

sequence composition,  sequence conservation, structure, structure conservation and 

thermodynamic stability for SVM classification. It uses a preprocessor that identifies 

conserved ‘almost- hairpins’ in a multiple sequence alignment. miPred [9] uses a set 

of 29 features, consisting of global and intrinsic RNA folding measures, to construct a 

Support Vector Machine (SVM) classifier to distinguish between precursors and non-

precursors.

Other kinds of learning-based prediction tools have also been developed, such as a 

random  forest  prediction  technique  MiPred [10]  that  uses  a  set  of  tree-based 

classifiers  combining sampling of training data with random feature selection, and 

linear genetic programming-based MiRPred [11]. MIRPred uses 16 classifiers and an 

EST  match  filter.  These  tools  generally  use  pairwise  /  multiple  alignments  for 

scanning, except for Triplet SVM and MIRpred that use a single genome; and these 

have been evaluated on a single chromosome, or a part of a chromosome.

Hybrid approaches involving both experimentation and computation have also been 

used for large scale novel miRNA discovery. One such approach is to sequence small 

RNAs and then to analyse these in terms of known and novel miRNAs using miRNA 

prediction  tools  [12].   miRdeep uses  a   probabilistic,  additive  scoring  method to 
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detect  miRNAs  [13].  However,  some  of  the  filters  used  for  scoring  are  highly 

stringent and likely to miss many miRNAs. 

This  report  describes  a  miRNA prediction  method which  uses  a  context-sensitive 

Hidden Markov Model (CSHMM) and examines its application for predicting new 

miRNAs in the human genome. 

Methods

Datasets

The following datasets were used for experiments in this paper:

(D1) The primary and secondary structures of 323 human miRNA precursors (these 

were obtained from miRBase);  (D2)  The primary structure of 646 “pseudo-hairpin” 

sequences [9]; i.e.,  sequences from human genic regions which can fold up into a 

hairpin structure, similar to pre-miRNA. These are expected to contain no miRNA 

precursors; (D3) The primary structures of 1,918 non-human miRNA precursors from 

40 different species (taken from the datasets used by Ng and Mishra [9]);  (D4) The 

non coding RNA set  (Ensembl).  Homo_sapiens.NCBI36.54.ncrna.fa;  (D5)  Small 

RNA sequences obtained  from normal human leukocytes.

Cross validation and Hold out Tests

Part of datasets D1 and D2 (200 and 400 sequences respectively) were used as the 

training data (this was identical to that used by Ng and Mishra [9]) to construct the 

final classification tree. The remaining sequences from these two datasets, along with 

dataset  D3,  D4  were  used  as  test  data  on  which  predictions  were  made.  

To exclude the influence of same-family members on the cross-validation and the 

holdout  results all human miRNAs from left-out test set, which had a member of the 

same family in the respective training set were removed and only one member of each 
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family in a test set was kept. Thus the 123 remaining human precursors were purged 

of all the actual human pre-miRNAs belonging to families that were also represented 

in the training set (there were 41 of these). The test set comprised of 82 human pre-

miRNAs  and  246  pseudo-hairpins.  Similarly  the  Dataset  D3  (1918  non  human 

miRNA sequences) was reduced to 512 sequences on removing family similarities. 

The known miRNAs were removed from the non coding RNA set D4 and the rest 

(6978) were used as a test set as many of the other ncRNAs also form miRNA-like 

secondary structures. For details of the cross validation see Additional file 1.

Representing miRNA precursors

Regular  HMMs  cannot  be  used  to  generate  the  language  of  miRNA precursors: 

ignoring  the  loop,  this  language  is  that  of  palindromes  with  distant  interactions 

between nucleotides  and we need at  least  a  context-free  grammar  to  represent  it. 

However, the idea of CSHMMs has been recently proposed [14].  These are capable 

of representing such sequences. CSHMMs extend the idea of HMMs by introducing a 

memory, in the form of a stack or a queue, between certain states in the model. The 

original idea was to have a pairwise-emission state, which would put a copy of every 

symbol emitted by it into the associated memory, and a single corresponding context-

sensitive state, which would read a symbol from the memory, and based on it, would 

then decide what to emit and where to transit.  To represent miRNA structures, we 

have extended this idea slightly. The CSHMM structure we propose has two context 

sensitive states which are linked to the same pairwise-emission state through a stack. 

This  is  because  we  need  separate  states  to  generate  the  stem and  the  symmetric 

bulges; yet  both these states need information about what was emitted earlier (the 

stem state, so that  it  may emit the complementary nucleotides;  and the symmetric 

bulge state so that it may ensure the symmetry of the bulge). The structure of the 
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CSHMM we propose  is  shown in  Fig.  1.  Here  states  labeled  as  P are  pairwise-

emission states, those labeled as C are context-sensitive ones, and those labeled as S 

are regular HMM states.

Identifying miRNA precursors

Parameter estimation

A complete CSHMM consists not just of the structure, but also of probabilities for the 

symbols emitted and the probabilities of transition from one state to another (usually 

called  emission  and  transition  probabilities).  Given  data  of  known  stem-loop 

structures,  these  probabilities  can  be  estimated  by  keeping  count  of  the  different 

transition and emission events for all the states. With these counts, estimates of the 

emission and transition probabilities can be obtained using the following formulae 

[15]:

                                      Pe  ( q , σ )   =          ce ( q , σ ) (1)

                                                               Σρϵ Σ ce ( q , ρ)                       

                                      Pt  ( q , q' )  =           ct ( q, q')                      (2)

                                                              ΣsϵQ ct ( q , s )                          
                                         
Here,  Pe  is the probability of emitting symbol  σ in state  q; and Pt the probability of 

transiting from state  q to  q'.  Q is the set of all states in the models;  Σ is the output 

alphabet, consisting in this case of A, C, G and U;  ct  and  ce  are the transition and 

emission counts obtained from the labeled data.

For the two context-sensitive states, the symbol at the top of the stack also has to be 

taken into account. Accordingly, we modify the formulae above as follows (here  α 

represents a letter from the alphabet, i.e. A, C, G or U):
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                          Pe  ( q , σ | α )  =   ce  ( q , σ | α )  (3)

                                                        Σρ  Σϵ  ce ( q , ρ | α )                       

                       

         Pt  ( q , q' | α ) =   ct  ( q , q' | α )                  (4)

                                                        ΣsϵQ ct (q , s | α)                          

Discrimination

Given a complete CSHMM (structure and probabilities), and any input sequence, an 

optimal alignment algorithm for computing the most likely sequence of states using 

the CSHMM is known [16],  We cannot, however, use this algorithm to discriminate 

between  miRNA precursors  and  other  kinds  of  RNA sequences.  For  each  such 

sequence, the algorithm simply gives us two things: the most likely state sequence 

(and hence, secondary structure) and the likelihood of obtaining that state sequence. 

Nevertheless, if the parameters have been estimated using miRNA precursors, we can 

expect  relatively  high  likelihoods  for  such  sequences.  In  addition,  we would also 

expect to see a much closer match between the true secondary structure of miRNA 

sequences and the structure predicted by the alignment algorithm.

In this paper, we investigate a very simple discriminatory function that uses the results 

from the alignment algorithm. For our model, discrimination is a function only of the 

likelihood  returned  by  the  alignment  algorithm.  The  form  of  the  discriminatory 

function is  thus just  a single-node classification tree [17],  which corresponds to a 

threshold  on  the  likelihood  score.  The  value  of  this  threshold  is  estimated  from 

sequences of miRNA precursors and non-precursors. Each sequence is provided to the 

alignment algorithm, which uses the CSHMM from Stage 1 to return a likelihood 

value. A classification tree is then constructed to discriminate between the two sets of 

sequences, using just one feature: the likelihood value. 
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Results and Discussion

Performance of the CSHMM-based miRNA classifier

The  performance  of  the  two-stage  procedure  for  identifying  miRNA precursors 

described  here  was  assessed  by:  (a)  cross-validation  estimates  of  predictive 

performance, (b) predictions on an independent dataset of known miRNA precursors, 

and (c) prediction on a dataset of non coding RNAs. For comparison purposes, we 

also present the results obtained by using the recently described miPred classifier [9] 

on  the  same  data.  The  datasets  used  here  are  described  in  further  detail  under 

Methods.

The final CSHMM structure, along with estimates of the transition probabilities, is 

shown in Fig. 1. Results from the classification tree model built using the CSHMM 

likelihood scores are presented here, alongside those obtained with  miPred. The 5-

fold cross-validation estimate of predictive performance for our model on the human 

RNA training data (600 sequences, 200 from Dataset D1 and 400 from Dataset D2) is 

in Table 1. The cross-validation was done such that the miRNAs belonging to the 

same family were kept in a single fold. For  miPred,  the authors do not report the 

details of the 5-fold cross-validation results; only the overall accuracy is mentioned as 

93.5%.  Results  on  the  test  set  (remaining  sequences  from  D1  and  D2)  for  the 

respective classifiers are in Table 2.  The CSHMM-based classifier identified 94% of 

the total non-human miRNAs (Dataset D3) and 83% of the purged D3 set (without 

sequence  similarity),  and  reported  4% of  the  non  coding  RNAs  (Dataset  D4)  as 

miRNAs. The principal observations that we can make from the results are these:

(1) The CSHMM-based classifier performs as well as the SVM based model used by 

miPred: on both human and non-human pre-miRNA test sets, our model’s results are 

as good as or slightly better than those of miPred. The primary advantage of CSHMM 
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over miPred is that it is a generative model, as opposed to a discriminative model like 

an  SVM used by  miPred.  This  means  that  not  only  can  we use  the  CSHMM to 

identify likely pre-miRNA sequences, but can also use it to predict the most likely 

secondary  structure  for  a  given  pre-miRNA  candidate.  CSHMM  specifies  a 

probability distribution over all possible secondary structures. In addition to this, the 

CSHMM also  simplifies  the  feature  space  representation  of  each  sequence,  as  it 

captures  all  relevant  information  in  a  single  number,  the  likelihood  score  in 

comparison to an SVM, where we need to compute a large number of features per 

sequence in order to do the classification.

(2) The test results are largely in agreement with the 5-fold cross-validation estimates 

of Table 1. In particular, we see that both sensitivity and specificity values obtained on 

the human pre-miRNA and “pseudo-hairpin” set  (Table  2) are  very similar  to  the 

cross-validation estimates. For nonhuman miRNAs, the sensitivity observed is about 

94% in comparison to sensitivity of 92% obtained with miPred on the whole set (1918 

sequences). On removal of sequence similarities (leaving 512 sequences, as described 

in Methods) the sensitivity is 83%. We have also analysed other non coding RNAs 

(ncRNA, dataset D4) for checking the specificity of the CSHMM. Only 4% of the 

sequences were identified as miRNAs, suggesting that the method discriminates well 

between actual miRNAs and other ncRNAs. Thus, in essence, only one feature (the 

likelihood  score  from  the  CSHMM)  is  effectively  capturing  all  of  the  structural 

information encapsulated in the set of 29 features used by the miPred classifier. We do 

need to store all of the emission and transition probabilities, but these are parameters 

of the CSHMM model as a whole, not features of each individual sequence. Once the 

CSHMM model has been learnt, we only need to calculate one feature per sequence, 

which is the likelihood score from the alignment. Thus, the CSHMM method greatly 

reduces the dimension of the feature space representation as compared to miPred's 
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SVM  model:  a  key  advantage  of  our  model  is  that  it  offers  a  much  simpler 

representation of miRNA precursors.  Rather  than looking to  use a lot  of different 

folding measures  like  thermodynamic  free energy,  entropy,  dinucleotide  frequency 

etc.  to predict  whether  a sequence is  a pre-miRNA or  not,  the CSHMM looks to 

statistically determine and encode the secondary structure features of actual miRNA 

precursors. By doing so, it not only allows us to make predictions on new sequences 

(based  on  a  threshold  on  the  likelihood  score),  but  also  provides  the  most  likely 

secondary structure for any given sequence on the assumption that it is a pre-miRNA.

 The threshold used by the classification tree represents just one possible cutoff on the 

CSHMM's  likelihood  score  (obtained,  in  this  case,  by  a  method  of  minimising 

entropy).  More  generally,  the  performance  of  classifiers  with  different  thresholds 

(resulting  in  correspondingly  different  true  and  false  positive  rates)  can  be 

summarised by a ROC curve. This is shown for holdout validation in Fig. 2. The 

curve shows a steep step-like slope, which usually suggests a good classifier across a 

range of thresholds.

Identification of novel miRNAs using the CSHMM-based classifier

We are mainly interested in  the identification of  novel  miRNAs.  To this  end,  the 

CSHMM-based classifier was used to scan the entire chromosome 19. The classifier 

identified 70 out of the 80 known miRNAs present on this chromosome (Additional 

file 2). Around 18,188 additional hairpins having high likelihood scores, were taken 

as a candidate set and were subjected to post-prediction filters comprising of presence 

of  EST  matches  and  presence  of  Drosha  cutting  sites.  100%  matches  with 

untranslatable ESTs were shown by 2528 hairpins, out of which 49  harbored Drosha 

cutting sites (Additional file 3 most, but not all of these 49 novel precursors were also 

predicted by CID-miRNA [18] and MiPred). Additional file 4 shows the sequences 
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and the structures of these predicted novel miRNAs.

We also carried out analysis of small RNA sequences from normal human leukocytes 

(Dataset D5). Flanking sequences of small RNA reads originating from the intergenic 

and intronic regions of the human genome were extracted and were folded by the 

CSHMM, CIDmiRNA and miRDeep (to identify  the precursors/hairpins harboring 

these sRNAs). The sRNAs falling within the same hairpin were classified as IsomiRs 

and star sequences [12] and grouped into a family. IsomiRs are sRNAs that fall within 

the same precursor sequence predicted and which have the same sequence but vary by 

a  few  nucleotides  from  each  other  on  account  of  alternative  Dicer  cutting.  Star 

sequences  are  sRNA that  also  fall  within  the  same  hairpin  but  have  a  partially 

complementary sequence. 

The member with the highest frequency (expression level) was deemed as a novel 

miRNA. The CSHMM identified 359 sRNAs falling within hairpins out of which 308 

were novel miRNAs owing to their highest frequency in their respective family. This 

was  found to  be comparable  to  that  obtained by CID-miRNA. Since miRDeep is 

likely to miss many valid miRNAs due to  a number of stringent criteria, such as 

expression level,  used for prediction of novel miRNAs, it  is  not  surprising that  it 

identified only 22 sRNAs falling in hairpins out of which 5 were novel miRNAs. The 

Additional file  5 shows 18 sRNAs (common among the three tools)  grouped into 

families  and  their  respective  representative  novel  miRNAs.  The  Additional  file  6 

shows the sequences and the structures of the 5 representative novel miRNAs.  
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Conclusions

Methods that can recognise miRNAs without the restriction of sequence homology 

can help to focus the experimental effort for unknown families of miRNAs. In this 

paper, we have investigated one such method. The recognition is achieved using a 

recently  proposed  extension  to  Hidden  Markov  Models,  which  allows  the 

development of probabilistic variants of context-sensitive grammars, which may be 

better  suited  to  represent  efficiently  the  “language”  of  miRNA  precursors. 

Specifically, we: (a) propose a context-sensitive Hidden Markov Model (CSHMM) 

for  recognizing  miRNA structures;  (b)  use  known  human  miRNA sequences  to 

estimate transition and emission probabilities for the CSHMM; (c) obtain the most 

likely secondary structure for a given sequence of nucleotides using the CSHMM; and 

(d) use the likelihood values from the output of the CSHMM to construct a recognizer 

(in  the form of  a  classifier)  for  miRNAs.  The results  suggest  that  we are  able  to 

develop a very simple classifier that shows a sensitivity of about 85% along with a 

specificity of about 97-98% on human miRNA sequences. Although not trained using 

non-human sequences, the recogniser is able to identify a substantial proportion of a 

set of known miRNAs from 40 different non-human species; the true-positive rate on 

these is around 83%. In addition it can also differentiate miRNAs from other ncRNAs 

that form miRNA-like secondary structures. Mature miRNA derived from one of the 

predicted  sequences  was  experimentally  detected  verifying  the  prediction  (not 

shown).  The  CSHMM-based  classifier  constructed  here  is  available  as  an  applet 

online [19].
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Figures

Figure 1 - The context-sensitive HMM proposed to represent miRNA precursors 

with estimated transition probabilities. 

State P1 emits the upper halves of the stem and symmetric bulges. States S1 and S3 

emit the asymmetric bulges in the upper and lower sections respectively. State S2 

emits the loop. States C11 and C12 emit the lower halves of the stem and symmetric 

bulges respectively (~ refers to probabilities averaged over the four possible top-of-

stack symbols).

Figure 2 - Receiver-Operating Characteristic (ROC) curve for the CSHMM 

classifier on the test set. 

Classification was done for a range of thresholds on the likelihood score, and true and 

false positive rates computed for each case. The point in red shows the results of the 

‘optimal’ threshold, as determined by entropy minimization, and corresponds to the 

results reported in Table 2(a).
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Tables

Table 1: 5-fold  cross-validation Performance of  the CSHMM using a  human 

miRNA dataset. The number in parentheses below each entry is the expected value of 

the entry under the hypothesis that the actual class is independent of the predicted 

one. Estimates of predictive accuracy, sensitivity and specificity from this table are 

0.93 (93%), 0.85 (85%) and 0.97 (97%) respectively.

                                    Actual

Predicted

miRNA non-miRNA

miRNA   170      
(60.67)

  12   
(121.33)

182

non-miRNA   30        
(139.33)

  388  
(278.67)

418

  200   (dataset D1)  400  (dataset D2) 600
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Table  2:  Predictive  performance  of  CSHMM and  miPred on  a  common test 

dataset. The number in parentheses below each entry is the expected value of the 

entry under the hypothesis that the actual class is independent of the predicted one. 

Estimates of predictive accuracy, sensitivity and specificity of CSHMM (a) from this 

table are 0.930 (93.0%), 0.768 (76.8%), and 0.984 (98.4%) respectively. For miPred 

(b) these are 0.930 (93.0%), 0.780 (78.0%) and 0.980 (98.0%) respectively.

(a) CSHMM
                                                                        Actual

Predicted

miRNA non-miRNA

miRNA 63
(16.75)   

 4     
(50.25)

67

non-miRNA 19
(65.25)     

 242 
(195.75)

261

82  (dataset D1)  246   (datasetD2) 328
(b) miPred

                                                                        Actual

Predicted

miRNA non-miRNA

miRNA 64
(17.25) 

 5     
(51.75)

69

non-miRNA  18
(64.75)   

241
(194.25)

259

 82 (dataset D1) 246 ( dataset D2) 328
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Additional files

Additional file 1 – Methodological details of CSHMM implementation and 

computational complexity estimation

PDF format

Additional file 2 – Analysis of known miRNAs of Chromosome 19

This file contains the list of the known miRNAs present on chromosome 19, 

70 of these were predicted by CSHMM. PDF format

Additional file 3 – Novel predicted miRNAs of Chromosome 19

This file contains 9 intergenic and 40 intronic novel miRNAs predicted by CSHMM 

along with their respective CSHMM likelihood scores, EST matches, Drosha site 

prediction scores and MiPred scores. XLS format

Additional file 4 – Secondary structures of the novel predicted  miRNAs of 

Chromosome 19. 

PDF format

Additional file 5 – Novel miRNAs from Small RNA sequence analysis 

The sRNAs are grouped into their respective IsomiR families as and when present. 

The ones highlighted in blue are the representative novel miRNAs, identified on the 

basis of  highest frequency within the family. PDF format

Additional file 6 – Secondary structures of the 5 representative novel miRNA 

from the sRNA  sequence data

PDF format
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