Department of Electrical Engineering, IIT Delhi EEL702 System Software: Minor I Examination

(Closed book/Closed Notes) Time: 1 hour Maximum Marks: 15

"Thou shalt not covet thy neighbour's answers"

1. ls | more; more or less

(3 marks)

Consider	the	DFA	, M	_ =
$\{Q, \Sigma, \{q_1\}\}$				where
all the	symb	ols	have	their
'usual' r	neaning	gs.	Q) =
$\{q_1, q_2, q_3,$	q_4, q_5, q	q_6, q_7, q_8	q_8	
$F = \{q_1$	$,q_{3},q_{7}\}$, and	δ is	given
by the ta	ble to	the r	ight.	Using
this info	rmation	ı, cc	onstru	ct an
equivalent	minim	um-st	ate D	FA.

State	a	b
q_1	q_2	q_4
q_2	q_5	q_3
q_3	q_2	q_6
q_4	q_1	q_5
q_5	q_5	q_5
q_6	q_3	q_5
q_7	q_6	q_8
q_8	q_7	q_3

2. Simplicity in Complexity: Do you see a pattern?

(3 marks)

```
Consider
         the fol- ALGORITHM FSM_matcher
lowing
         DFA-based
                      q := 0; compute_\delta();
algorithm to
                find
                      FOR i := 1 TO n DO
all
    occurrences of
                         q := \delta(q, T[i]);
           P[1...m]
                         IF q == m THEN print shift=i - m;
pattern
in a piece of text
                       ALGORITHM compute_\delta()
T[1...n]. Write an
                       FOR q := 0 TO m DO
expression for
                       FOREACH a \in \Sigma DO
                 the
complexity
            of
                 the
                         k := \min(m+1, q+2);
                                                   REPEAT k := k - 1;
given algorithm in
                         UNTIL P[1..k] is a suffix of P[1..q]a
terms of n, m, and
\Sigma (where all symbols have their 'usual' meanings). Explain your answer.
```

- 3. फिर एक दफ़ा... **DFA** Construct a DFA for the alphabet $\Sigma = \{0,1\}$ which accepts all strings with 00 as a substring.
- 4. Even the Introvert must engage in Regular Expression! Construct a regular expression for the *complement* of the language accepted by the DFA of the previous question. (3 marks)
- 5. One for the Smart A-lex.../* No Comments! */ What precisely does the following lex code print out, given a few lines of text input, terminated by a Control-D? There will be no marks for an imprecise answer. It is a digital world, you know! (3 marks)

```
%{
int i, j, k;
%}
%%
          { k++; i++; }
[^ \t\n]+ { j++; i += yyleng; }
          { i++; }
%%
int main(void)
{ yylex(); printf("\d\t\d\n",j,k,i); return 0; }
```