
EEL702: Major Test

November 27, 2013

Maximum Marks: 30

Note: The files for Questions 1 and 2 are at http://web.iitd.ac.in/~sumeet/eel702. In case you cannot
access the LAN, they will also be available on USB memory sticks.

1. A man of letters doesn’t go into a shell: He scripts them! Consider the problem of generat-
ing admission letters from a spreadsheet, and sending them over email. You are given a spreadsheet
admissions.xls which looks like the following. The first column has the application number; the second
has the name (with all parts of the name separated by a ‘.’, without any space anywhere, for programming
convenience); the third has the category: General, or Reserved; the fourth has the gender of the person,
and the fifth, his/her email address. Disclaimer: all the data below is purely ficticious, and resemblance
to any person living, dead, or otherwise, is purely unintentional. [6]

EE001 Hariharan.S GEN M hariiyer@gmail.com

EE002 Kaustubh.S.Gadhvi GEN M kg.coep@gmail.com

EE003 M.S.K.Padma GEN F padma mariganti@yahoo.com

EE004 Ranjana.Kumar RES F ranju1990@rediffmail.com

EE005 Tshering.W.Tuithung RES M tuithung guitar@gmail.com

Write a shell script in bash or tcsh alone (no perl, python, or related software), using ‘standard’ UNIX
tools alone, to generate admission letters, and mail them to each person. Keep in mind:

• Convert the spreadsheet admissions.xls into a text admissions.csv (Comma-Separated Values
file).

• Assume the system to have the required shell /bin/tcsh or /bin/bash. Your shell script should run
in the correct shell if the user simply writes the name of the script in the correct syntax. e.g.,
./admission script admissions.csv

and not an explicit
bash ./admission script admissions.csv

• Do a proper syntax check: the script should take in only one parameter on the command line, else
print the following error message: usage: admission script <file>

(Generate admission emails)

• The gender of the person dictates the salutation as ‘Mr.’ or ‘Ms.’, and the corresponding hostel he/she
will be put up in (read, ‘which hostel he/she has to put up with’): women in Himadri, and men in
Girnar. The category dictates the amount he/she will have to bring a crossed DD for: Rs.500/- for
the reserved category (RES), and Rs.1000/- for the general category (GEN). For instance, the letter
to Ms. Ranjana.Kumar EE004.txt will read:

Dear Ms.Ranjana.Kumar,

You will be accommodated in Himadri hostel

Please get a crossed DD for Rs.500/-

• Assume email software elm is present in the path. The syntax is:
elm -s "The subject line" abc@def

followed by the email text typed out on the terminal. You have to use it suitably in the shell script.

2. Totally@C? This apparently simple piece of C code hack.c just refuses to do what is intended. You
have to take a character input using scanf alone, and yet, get the program to do its intended job. [4]

1



#include <stdio.h>

int main(void)

{

char c;

char string[30];

do{

printf("please enter any string: ");

scanf("%s",string);

printf("‘q’ to quit, other character to continue: ");

scanf("%c",&c);

}while(c != ’q’);

return 1;

}

3. A hard software question. . . firm answers, please! consider a DFA whose input alphabet Σ is the
set of all English lower-case letters. Discuss how you will implement this using Flip Flops, and other
digital components. No stories, please! [3]

4. (a) What are the goals of semantic analysis during compilation? Why can these not be achieved during
parsing? [2]

(b) Give the output of the following piece of code assuming (i) static scoping and (ii) dynamic scoping.
You should explain your answers. [3]

int a = 12;

int b = 5;

void mult(){

printf("%d\n",a*b);

}

void rec1(){

int a = 1;

mult();

}

void rec2(){

int b = 7;

rec1();

}

mult();

rec1();

rec2();

5. (a) State the key differences between the imperative and declarative programming paradigms. Give one
advantage of each paradigm. [2]

(b) State and describe two key features of object-oriented programming that distinguish it from procedural
programming. [2]

6. (a) What are the three elements of formal verification? Why is temporal logic useful in this context? How
might UML be useful for formal verification of a software system? [2]

(b) What are safety, liveness, and fairness? Give one example of each kind of property, stated both in
English and in temporal logic. [2]

(c) Show (with derivation/justification) how the ‘always’ (�) and ‘sometime’ (♦) operators can be rewritten
in terms of only the ‘next’ (©) and ‘until’ (U) operators. [2]

7. Describe the functionality of the Map and Reduce procedures. Why are they useful for distributed
computing? [2]

2


