February 15, 2015

Paper code: T16* Maximum Marks: 25

1. The following are some admissions statistics for the two BNon[†] degree programmes at the University of Nonsensical Studies. The numbers in the cells are to be interpreted as <No. of successful applicants>/<Total no. of applicants>.

	BNon Witchcraft	BNon Horoscopy
Girls	15/90	5/10
Boys	8/50	32/70

We would like to set up a probabilistic model for this, involving the following parameters (assume that every applicant to this University must choose just one of the two programmes listed above):

- θ : The prior probability of an applicant to this University being a girl.
- q_g : The probability of a girl applicant choosing Witchcraft.
- q_b : The probability of a boy applicant choosing Witchcraft.
- p_{qw} : The probability of a girl applicant to Witchcraft being successful.
- p_{bw} : The probability of a boy applicant to Witchcraft being successful.
- p_{qh} : The probability of a girl applicant to Horoscopy being successful.
- p_{bh} : The probability of a boy applicant to Horoscopy being successful.
- (a) Write down the likelihood (denote it \mathcal{L}) of the above data, given these parameters. Be careful and clear with your notation, and keep in mind that you need to account for *all* of the applicants included in the above statistics. [4]
- (b) Use this likelihood function to obtain the maximum likelihood estimate for p_{gw} . Clearly show your working, and try to keep it as concise as possible. (Hint: Making appropriate use of the symbol \mathcal{L} introduced above can greatly simplify your working.)
- (c) Give the maximum likelihood estimates for the other 6 parameters. (Just write down the answers, no working needs to be shown.)
- 2. The diastolic blood pressure readings (in mmHg) of 5 individuals from a given population are found to be as follows: $\{84, 82, 87, 89, 85\}$.
 - (a) Let us assume that the underlying distribution is uniform over a limited range, i.e., we have

$$p(x|a,b) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b. \\ 0, & \text{otherwise.} \end{cases}$$

^{*}Please write this code on the cover page of your answer script.

 $^{^\}dagger \mbox{Bachelor}$ of Nonsense.

- (b) Assuming that the underlying distribution really is uniform, do you think these are good estimates of a and b? Why or why not? [1]
- (c) Now let us assume a normal underlying distribution:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Furthermore, suppose someone has told us beforehand that μ is expected to be 75mmHg, with a standard deviation of 5mmHg. We wish to carry out Bayesian inference, using this information as our prior. Given the above data, compute MAP estimates of μ for two different assumed values of σ : $\sigma = 1$ and $\sigma = 10$.

- (d) Which of these two do you think gives a better estimate of the true population mean? What is the problem with the other estimate: is it underfitting, or overfitting? [2]
- 3. Consider a supervised two-class classification problem in two dimensions, with the following training set:

x_1	x_2	t
1	1	-1
1	-1	-1
-1	1	-1
2	2	1
-2	-2	1
-2	2	1

- (a) Draw a graph depicting this training set. What will happen if we attempt to train a hard-margin linear (i.e., no kernel) SVM on this data? Explain. [1]
- (b) Now suppose you can map the input feature space $\mathbf{x} = (x_1, x_2)$ to some new feature space $\phi(\mathbf{x})$. Give the simplest (i.e., lowest dimensional) mapping ϕ you can think of, in order to allow a hard-margin linear SVM to be trained in the new space.
- (c) Depict, in your graph drawn in part (a) above, the decision boundary that will be learnt in part (b). What is the equation of this boundary (in terms of the *original features*, x_1 and x_2)?
- (d) Rather than explicitly applying the mapping ϕ to the data and learning a linear SVM in the transformed space, we could have achieved the same effect by using the *kernel trick* to learn a non-linear SVM in the input space itself. Write down the kernel function $K(\mathbf{x}, \mathbf{x}')$ corresponding to your choice of ϕ .

February 15, 2015

Paper code: J29* Maximum Marks: 25

1. The following are some admissions statistics for the two BNon[†] degree programmes at the University of Nonsensical Studies. The numbers in the cells are to be interpreted as <No. of successful applicants>/<Total no. of applicants>.

	BNon Witchcraft	BNon Horoscopy
Girls	10/70	3/18
Boys	10/40	24/72

We would like to set up a probabilistic model for this, involving the following parameters (assume that every applicant to this University must choose just one of the two programmes listed above):

- π : The prior probability of an applicant to this University being a girl.
- p_q : The probability of a girl applicant choosing Witchcraft.
- p_b : The probability of a boy applicant choosing Witchcraft.
- q_{qw} : The probability of a girl applicant to Witchcraft being successful.
- q_{bw} : The probability of a boy applicant to Witchcraft being successful.
- q_{qh} : The probability of a girl applicant to Horoscopy being successful.
- q_{bh} : The probability of a boy applicant to Horoscopy being successful.
- (a) Write down the likelihood (denote it \mathcal{L}) of the above data, given these parameters. Be careful and clear with your notation, and keep in mind that you need to account for *all* of the applicants included in the above statistics. [4]
- (b) Use this likelihood function to obtain the maximum likelihood estimate for q_{bh} . Clearly show your working, and try to keep it as concise as possible. (Hint: Making appropriate use of the symbol \mathcal{L} introduced above can greatly simplify your working.) [3]
- (c) Give the maximum likelihood estimates for the other 6 parameters. (Just write down the answers, no working needs to be shown.)
- 2. The diastolic blood pressure readings (in mmHg) of 5 individuals from a given population are found to be as follows: $\{74, 72, 77, 79, 75\}$.
 - (a) Let us assume that the underlying distribution is uniform over a limited range, i.e., we have

$$p(x|a,b) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b. \\ 0, & \text{otherwise.} \end{cases}$$

^{*}Please write this code on the cover page of your answer script.

[†]Bachelor of Nonsense.

- (b) Assuming that the underlying distribution really is uniform, do you think these are good estimates of a and b? Why or why not? [1]
- (c) Now let us assume a normal underlying distribution:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Furthermore, suppose someone has told us beforehand that μ is expected to be 64mmHg, with a standard deviation of 4mmHg. We wish to carry out Bayesian inference, using this information as our prior. Given the above data, compute MAP estimates of μ for two different assumed values of σ : $\sigma = 1$ and $\sigma = 10$.

- (d) Which of these two do you think gives a better estimate of the true population mean? What is the problem with the other estimate: is it underfitting, or overfitting? [2]
- 3. Consider a supervised two-class classification problem in two dimensions, with the following training set:

x_1	x_2	t
2	2	-1
2	-2	-1
-2	2	-1
3	3	1
-3	-3	1
-3	3	1

- (a) Draw a graph depicting this training set. What will happen if we attempt to train a hard-margin linear (i.e., no kernel) SVM on this data? Explain. [1]
- (b) Now suppose you can map the input feature space $\mathbf{x} = (x_1, x_2)$ to some new feature space $\phi(\mathbf{x})$. Give the simplest (i.e., lowest dimensional) mapping ϕ you can think of, in order to allow a hard-margin linear SVM to be trained in the new space.
- (c) Depict, in your graph drawn in part (a) above, the decision boundary that will be learnt in part (b). What is the equation of this boundary (in terms of the *original features*, x_1 and x_2)?
- (d) Rather than explicitly applying the mapping ϕ to the data and learning a linear SVM in the transformed space, we could have achieved the same effect by using the *kernel trick* to learn a non-linear SVM in the input space itself. Write down the kernel function $K(\mathbf{x}, \mathbf{x}')$ corresponding to your choice of ϕ .

February 15, 2015

Paper code: W36* Maximum Marks: 25

1. The following are some admissions statistics for the two BNon[†] degree programmes at the University of Nonsensical Studies. The numbers in the cells are to be interpreted as <No. of successful applicants>/<Total no. of applicants>.

	BNon Witchcraft	BNon Horoscopy
Girls	20/60	3/15
Boys	15/45	9/30

We would like to set up a probabilistic model for this, involving the following parameters (assume that every applicant to this University must choose just one of the two programmes listed above):

- θ : The prior probability of an applicant to this University being a girl.
- q_q : The probability of a girl applicant choosing Witchcraft.
- q_b : The probability of a boy applicant choosing Witchcraft.
- p_{qw} : The probability of a girl applicant to Witchcraft being successful.
- p_{bw} : The probability of a boy applicant to Witchcraft being successful.
- p_{gh} : The probability of a girl applicant to Horoscopy being successful.
- p_{bh} : The probability of a boy applicant to Horoscopy being successful.
- (a) Write down the likelihood (denote it \mathcal{L}) of the above data, given these parameters. Be careful and clear with your notation, and keep in mind that you need to account for *all* of the applicants included in the above statistics. [4]
- (b) Use this likelihood function to obtain the maximum likelihood estimate for p_{gh} . Clearly show your working, and try to keep it as concise as possible. (Hint: Making appropriate use of the symbol \mathcal{L} introduced above can greatly simplify your working.) [3]
- (c) Give the maximum likelihood estimates for the other 6 parameters. (Just write down the answers, no working needs to be shown.)
- 2. The diastolic blood pressure readings (in mmHg) of 5 individuals from a given population are found to be as follows: $\{69, 74, 67, 71, 72\}$.
 - (a) Let us assume that the underlying distribution is uniform over a limited range, i.e., we have

$$p(x|a,b) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b. \\ 0, & \text{otherwise.} \end{cases}$$

^{*}Please write this code on the cover page of your answer script.

[†]Bachelor of Nonsense.

- (b) Assuming that the underlying distribution really is uniform, do you think these are good estimates of a and b? Why or why not? [1]
- (c) Now let us assume a normal underlying distribution:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Furthermore, suppose someone has told us beforehand that μ is expected to be 80mmHg, with a standard deviation of 4mmHg. We wish to carry out Bayesian inference, using this information as our prior. Given the above data, compute MAP estimates of μ for two different assumed values of σ : $\sigma = 1$ and $\sigma = 10$.

- (d) Which of these two do you think gives a better estimate of the true population mean? What is the problem with the other estimate: is it underfitting, or overfitting? [2]
- 3. Consider a supervised two-class classification problem in two dimensions, with the following training set:

x_1	x_2	t
3	3	-1
3	-3	-1
-3	3	-1
1	1	1
-1	-1	1
-1	1	1

- (a) Draw a graph depicting this training set. What will happen if we attempt to train a hard-margin linear (i.e., no kernel) SVM on this data? Explain. [1]
- (b) Now suppose you can map the input feature space $\mathbf{x} = (x_1, x_2)$ to some new feature space $\phi(\mathbf{x})$. Give the simplest (i.e., lowest dimensional) mapping ϕ you can think of, in order to allow a hard-margin linear SVM to be trained in the new space.
- (c) Depict, in your graph drawn in part (a) above, the decision boundary that will be learnt in part (b). What is the equation of this boundary (in terms of the *original features*, x_1 and x_2)?
- (d) Rather than explicitly applying the mapping ϕ to the data and learning a linear SVM in the transformed space, we could have achieved the same effect by using the *kernel trick* to learn a non-linear SVM in the input space itself. Write down the kernel function $K(\mathbf{x}, \mathbf{x}')$ corresponding to your choice of ϕ .

February 15, 2015

Paper code: X47* Maximum Marks: 25

1. The following are some admissions statistics for the two BNon[†] degree programmes at the University of Nonsensical Studies. The numbers in the cells are to be interpreted as <No. of successful applicants>/<Total no. of applicants>.

	BNon Witchcraft	BNon Horoscopy
Girls	3/20	30/60
Boys	12/84	12/36

We would like to set up a probabilistic model for this, involving the following parameters (assume that every applicant to this University must choose just one of the two programmes listed above):

- π : The prior probability of an applicant to this University being a girl.
- p_q : The probability of a girl applicant choosing Witchcraft.
- p_b : The probability of a boy applicant choosing Witchcraft.
- q_{qw} : The probability of a girl applicant to Witchcraft being successful.
- q_{bw} : The probability of a boy applicant to Witchcraft being successful.
- q_{qh} : The probability of a girl applicant to Horoscopy being successful.
- q_{bh} : The probability of a boy applicant to Horoscopy being successful.
- (a) Write down the likelihood (denote it \mathcal{L}) of the above data, given these parameters. Be careful and clear with your notation, and keep in mind that you need to account for *all* of the applicants included in the above statistics. [4]
- (b) Use this likelihood function to obtain the maximum likelihood estimate for q_{bw} . Clearly show your working, and try to keep it as concise as possible. (Hint: Making appropriate use of the symbol \mathcal{L} introduced above can greatly simplify your working.)
- (c) Give the maximum likelihood estimates for the other 6 parameters. (Just write down the answers, no working needs to be shown.)
- 2. The diastolic blood pressure readings (in mmHg) of 5 individuals from a given population are found to be as follows: $\{89, 92, 87, 90, 93\}$.
 - (a) Let us assume that the underlying distribution is uniform over a limited range, i.e., we have

$$p(x|a,b) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b. \\ 0, & \text{otherwise.} \end{cases}$$

^{*}Please write this code on the cover page of your answer script.

 $^{^\}dagger \mbox{Bachelor}$ of Nonsense.

- (b) Assuming that the underlying distribution really is uniform, do you think these are good estimates of a and b? Why or why not? [1]
- (c) Now let us assume a normal underlying distribution:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Furthermore, suppose someone has told us beforehand that μ is expected to be 72mmHg, with a standard deviation of 6mmHg. We wish to carry out Bayesian inference, using this information as our prior. Given the above data, compute MAP estimates of μ for two different assumed values of σ : $\sigma = 1$ and $\sigma = 10$.

- (d) Which of these two do you think gives a better estimate of the true population mean? What is the problem with the other estimate: is it underfitting, or overfitting? [2]
- 3. Consider a supervised two-class classification problem in two dimensions, with the following training set:

x_1	x_2	t
4	4	-1
4	-4	-1
-4	4	-1
2	2	1
-2	-2	1
-2	2	1

- (a) Draw a graph depicting this training set. What will happen if we attempt to train a hard-margin linear (i.e., no kernel) SVM on this data? Explain. [1]
- (b) Now suppose you can map the input feature space $\mathbf{x} = (x_1, x_2)$ to some new feature space $\phi(\mathbf{x})$. Give the simplest (i.e., lowest dimensional) mapping ϕ you can think of, in order to allow a hard-margin linear SVM to be trained in the new space.
- (c) Depict, in your graph drawn in part (a) above, the decision boundary that will be learnt in part (b). What is the equation of this boundary (in terms of the *original features*, x_1 and x_2)?
- (d) Rather than explicitly applying the mapping ϕ to the data and learning a linear SVM in the transformed space, we could have achieved the same effect by using the *kernel trick* to learn a non-linear SVM in the input space itself. Write down the kernel function $K(\mathbf{x}, \mathbf{x}')$ corresponding to your choice of ϕ .