Department of Electrical Engineering, IIT Delhi
EEL709 Pattern Recognition: Minor II Examination (Closed book/Closed Notes) Time: 1 hour Maximum Marks: 20

"Thou shalt not covet thy neighbour's answers"

Useful Formulae and Results:

The KLT: $\mathbf{r}_{\mathbf{i}}=\mathbf{U}^{T} \mathbf{p}_{\mathbf{i}}$. Here $\mathbf{p}_{\mathbf{i}}$ are Type-I normalised $k \times 1$ patterns (n of which can be stacked to get the Type-I normalised pattern matrix \mathbf{P}). \mathbf{U} is a matrix of eigenvectors of the covariance matrix $\mathbf{A}=\frac{1}{n} \mathbf{P} \mathbf{P}^{T}$. There are k eigenvectors $\mathbf{u}_{\mathbf{i}}$ corresponding to eigenvalues λ_{i}.
Useful Result 1: Eigenvectors of a symmetric matrix correspoding to non-repeated eigenvalues, are orthonormal.
Useful Result 2: Diagonalisation of a square matrix $\mathbf{B}: \mathbf{B}=\mathbf{U} \Lambda \mathbf{U}^{-1}$.
The SVD: $\mathbf{P}=\mathbf{U} \Sigma \mathbf{V}^{T}$, where this \mathbf{U} is the $k \times k$ matrix of orthonormal basis vectors, Σ is a $k \times n$ matrix having singular values σ_{i} along the main diagonal (the other values are all zero), and \mathbf{V} is an $n \times n$ matrix of the eigenvectors of $\mathbf{A}^{\prime}=\mathbf{P}^{T} \mathbf{P}$. These eigenvectors $\mathbf{v}_{\mathbf{i}}$ correspond to eigenvalues λ_{i}, and we define $\sigma_{i}=\sqrt{\lambda_{i}}$, and $\mathbf{u}_{\mathbf{i}}=\frac{1}{\sigma_{i}} \mathbf{P} \mathbf{v}_{\mathbf{i}}$.
Useful Result 3: Gram-Schmidt Orthogonalisation: $\mathbf{u}_{\mathbf{k}}=\mathbf{v}_{\mathbf{k}}-\sum_{j=1}^{k-1} \frac{\left\langle\mathbf{u}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right\rangle}{\left\langle\mathbf{u}_{\mathbf{j}}, \mathbf{u}_{\mathbf{j}}\right\rangle} \mathbf{u}_{\mathbf{j}}$, where $\mathbf{u}_{\mathbf{j}}$ are the new orthogonal basis vectors corresponding to the given set of k basis vectors $\mathbf{v}_{\mathbf{j}}, j=1, \ldots k$, and all other symbols have their usual meaning.

1. कभी आयी खुशी, कमी Eigen...
(a) सफ़ेदी की छमकार, ज़्यादा सफ़ेद - The Whitening Transformation: This is given by $\tilde{\mathbf{r}}_{\mathbf{i}}=\Lambda^{-1 / 2} \mathbf{U}^{T} \mathbf{p}_{\mathbf{i}}$. Here, we deal with $k \times 1$ Type-I normalized pattern vectors (i.e., normalised with respect to the mean) $\mathbf{p}_{\mathbf{i}}, 0 \leq i \leq n-1 . \Lambda$ is a diagonal matrix of their eigenvalues, and \mathbf{U} is their corresponding eigenvector matrix. What is the covariance matrix of the transformed patterns $\tilde{\mathbf{r}}_{\mathbf{i}}$? (2 marks)
(b) Orthopaedic Orthonormality: Bone-Breaking Normal Work Show that for non-repeated eigenvalues of a symmetric matrix, the eigenvectors will be orthonormal. Consider the case of repeated eigenvalues of a symmetric matrix A. Specifically use the GramSchmidt orthogonalisation process to show that it is still possible to obtain a set of orthonormal vectors.
(5 marks)
(c) Projection Interjection, Nothing to Lose? What is the physical significance of projecting a new vector onto an eigenspace? Explain using mathematical expressions, what the above implies, for both the KL-Transform as well as the SVD. Now, explain how the KLTransform and the SVD respectively perform lossy compression.

$$
(2+2 \text { marks })
$$

2. The logistic regression model for binary classification applies the following mapping for a given input feature vector \mathbf{x} :

$$
p\left(C_{1} \mid \mathbf{x}\right)=y(\mathbf{x})=\sigma\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)
$$

where \mathbf{w} is a vector of parameters (including an intercept w_{0}, with the convention that $x_{0}=1$), σ is the logistic sigmoid function, and C_{1} is one of the two class labels.

Write down the likelihood of a given data set $\left\{\left(\mathbf{x}_{1}, t_{1}\right) ;\left(\mathbf{x}_{2}, t_{2}\right) ; \ldots ;\left(\mathbf{x}_{N}, t_{N}\right)\right\}$, where the output $t_{n} \in\{0,1\}$, corresponding to the classes labeled C_{0} and C_{1} respectively. Show that for a linearly separable data set, the maximum likelihood solution is given by a vector \mathbf{w} whose decision boundary corresponds to a separating hyperplane, and where the magnitude of \mathbf{w} is infinity.
(4 marks)
3. Consider a binary classification problem where the input feature space is 2 -dimensional. The coordinates of the positive examples are $(1,1)$ and $(-1,-1)$. The coordinates of the negative examples are $(1,-1)$ and $(-1,1)$.
(a) Is the data separable in the original space? Consider a feature transformation defined by $\boldsymbol{\phi}(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1} x_{2}\right]$, where x_{1} and x_{2} are the two elements of the input vector \mathbf{x}. In this transformed space, give the weight vector \mathbf{w} corresponding to the maximum-margin separating hyperplane. (You need not show any derivation for this.)
(2 marks)
(b) Now add a fifth data point to your set, such that the data becomes non-separable even in the transformed space. Draw a plot showing the original 4 points plus your new point in the original 2-dimensional feature space. Justify why your new point makes the data non-separable even in the $\phi(\mathbf{x})$ space.
(1.5 marks)
(c) Write down the kernel function corresponding to $\boldsymbol{\phi}(\mathbf{x})$. Is this a Mercer kernel?

