ELL780: Minor Test I

August 27, 2016

Maximum Marks: 25

1. Let $P:\left(x_{1}, y_{1}\right)$ and $Q:\left(x_{2}, y_{2}\right)$ be two points in \mathbb{R}^{2}. Let the metric d be defined as

$$
d(P, Q)=\operatorname{Max}\left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right) .
$$

(i) Show that $\left(\mathbb{R}^{2}, d\right)$ is a metric space.
(ii) Let $P_{0}:\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Sketch the ball of radius δ with centre P_{0} in $\left(\mathbb{R}^{2}, d\right)$.
(iii) Is $\left\{\left(\frac{1}{n}, \frac{2}{n}\right), n \in \mathbb{N}\right\}$ a sequence in $\left(\mathbb{R}^{2}, d\right)$? Is it convergent? Find its limit.
2. Let V be the set of all (2×2) real matrices and $M \subseteq V$ be

$$
M=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], b=c \text { and } a+d=0\right\} .
$$

Here $a, b, c, d \in \mathbb{R}$.
(i) Show that V is a real vector space under the usual operations of addition and scalar multiplication of matrices.
(ii) Verify that M is a vector subspace of V.
(iii) Identify a basis of M.
(iv) Write the dimension of M.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\binom{x+y+z}{x+y-z}
$$

(i) Verify that T is a linear transformation.
(ii) Let a basis for \mathbb{R}^{3} be given as

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} .
$$

Also let a basis for \mathbb{R}^{2} be given as

$$
\left\{\binom{1}{0},\binom{1}{1}\right\}
$$

Determine the matrix A of the linear transformation T.
4. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Show that

$$
\left(\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right)^{2} \leq n\left(\left|x_{1}\right|^{2}+\ldots+\left|x_{n}\right|^{2}\right) .
$$

(Hint: Use the Cauchy-Schwartz inequality.)
5. Give an example of each of the following (if no such example is possible, give reasons for the same).
(i) $\mathrm{A}(3 \times 3)$ real symmetric matrix having eigenvalues as $1,(1+i)$, and $(1-i)$.
(ii) A Cauchy sequence in $\left(\mathbb{R}^{3}, d\right)$ which is not convergent. Here d is the Euclidean distance in \mathbb{R}^{3}.
(iii) A cone in \mathbb{R}^{3} which is not convex.
(iv) A countable set M in \mathbb{R} such that $\bar{M}=\mathbb{R}$. (Here \bar{M} : Closure of M).
(v) A (3×3) matrix A such that $\operatorname{Rank} A=3$ and A^{20} is singular.

