ELL780: Minor Test I

August 27, 2016

Maximum Marks: 25

1. Let $P:(x_1,y_1)$ and $Q:(x_2,y_2)$ be two points in \mathbb{R}^2 . Let the metric d be defined as

$$d(P,Q) = Max(|x_1 - x_2|, |y_1 - y_2|).$$

- (i) Show that (\mathbb{R}^2, d) is a metric space.
- (ii) Let $P_0:(x_0,y_0)\in\mathbb{R}^2$. Sketch the ball of radius δ with centre P_0 in (\mathbb{R}^2,d) .
- (iii) Is $\left\{\left(\frac{1}{n},\frac{2}{n}\right), n \in \mathbb{N}\right\}$ a sequence in (\mathbb{R}^2,d) ? Is it convergent? Find its limit.

2. Let V be the set of all (2×2) real matrices and $M \subseteq V$ be

$$M = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right], \ b = c \text{ and } a + d = 0 \right\}.$$

Here $a, b, c, d \in \mathbb{R}$.

- (i) Show that V is a real vector space under the usual operations of addition and scalar multiplication of matrices.
- (ii) Verify that M is a vector subspace of V.
- (iii) Identify a basis of M.
- (iv) Write the dimension of M.

3. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right)=\left(\begin{array}{c} x+y+z\\x+y-z\end{array}\right).$$

- (i) Verify that T is a linear transformation.
- (ii) Let a basis for \mathbb{R}^3 be given as

$$\left\{ \left(\begin{array}{c} 1\\0\\0 \end{array}\right), \left(\begin{array}{c} 1\\1\\0 \end{array}\right), \left(\begin{array}{c} 1\\1\\1 \end{array}\right) \right\}.$$

Also let a basis for \mathbb{R}^2 be given as

$$\left\{ \left(\begin{array}{c} 1\\0 \end{array}\right), \left(\begin{array}{c} 1\\1 \end{array}\right) \right\}.$$

Determine the matrix A of the linear transformation T.

[5]

[5]

4. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Show that

$$(|x_1| + \dots + |x_n|)^2 \le n(|x_1|^2 + \dots + |x_n|^2).$$

(Hint: Use the Cauchy-Schwartz inequality.)

[5]

[5]

- 5. Give an example of each of the following (if no such example is possible, give reasons for the same).
 - (i) A (3×3) real symmetric matrix having eigenvalues as 1, (1+i), and (1-i).
 - (ii) A Cauchy sequence in (\mathbb{R}^3, d) which is not convergent. Here d is the Euclidean distance in \mathbb{R}^3 .
 - (iii) A cone in \mathbb{R}^3 which is not convex.
 - (iv) A countable set M in \mathbb{R} such that $\overline{M} = \mathbb{R}$. (Here \overline{M} : Closure of M).
 - (v) A (3×3) matrix A such that $Rank\ A = 3$ and A^{20} is singular.