ELL780: Minor Test II

October 7, 2016

Maximum Marks: 25

1. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
2 & 1
\end{array}\right] \text { and } b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(i) Obtain the 'SVD in compact form' of A.
(ii) Determine the generalised inverse A^{+}.
(iii) Obtain the minimum 2-norm solution $\|\bar{x}\|_{2}$ of the system $A x=b$.
2. Let $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$.
(i) Express the above quadratic form as $x^{T} Q x$ by identifying the vector x and the matrix Q.
(ii) Evaluate $\|Q\|_{F},\|Q\|_{1},\|Q\|_{2}$, and $\|Q\|_{\infty}$.
(iii) It is claimed that Q is positive definite. Verify this claim.
3. Consider the LPP

$$
\begin{aligned}
& \operatorname{Max} \\
& \text { subject to } \\
& \\
& \quad x_{1}+x_{2} \leq 8 \\
& 2 x_{1}+x_{2} \leq 10 \\
& \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

Starting with the b.f.s. corresponding to the corner point ($x_{1}=0, x_{2}=8$) use the simplex algorithm to determine its optimal solution. (Do NOT use the graphical method.)
4. Give an example of each of the following (if no such example is possible, give reasons for the same):
(i) an inner product space which is not a normed linear space.
(ii) a norm $\|\cdot\|$ which does not satisfy the parallelogram law.
(iii) a (3×3) nonsingular matrix A whose at least one eigenvalue is zero.
(iv) a set of three orthonormal vectors in \mathbb{R}^{3} which does not constitute its basis.
(v) the orthogonal complement of the subspace $S=\{(x, y): 3 x+4 y=0\}$ in \mathbb{R}^{2}.
5. (i) Solve the following LPP graphically:

$$
\operatorname{Max} \quad z=4 x_{1}+3 x_{2}
$$

subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}=4 \\
& -x_{1}+x_{2}-x_{4}=1 \\
& \quad x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
\end{aligned}
$$

(ii) Let $\left\{x_{n}\right\}$ be a sequence in a Hilbert space H. Let $\left\{x_{n}\right\} \rightarrow x$. Let $x, y \in H$. Show that $y \perp x_{n}$ and $x_{n} \rightarrow x$ together imply that $x \perp y$.

