ELL780: Minor Test II

October 7, 2016

Maximum Marks: 25

1. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

(i) Obtain the 'SVD in compact form' of A.

(ii) Determine the generalised inverse A^+ .

(iii) Obtain the minimum 2-norm solution $||\bar{x}||_2$ of the system Ax = b. [5]

- 2. Let $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + x_3^2 2x_1x_2 + 2x_2x_3$.
 - (i) Express the above quadratic form as $x^T Q x$ by identifying the vector x and the matrix Q.
 - (ii) Evaluate $||Q||_F$, $||Q||_1$, $||Q||_2$, and $||Q||_{\infty}$.
 - (iii) It is claimed that Q is positive definite. Verify this claim. [5]

3. Consider the LPP

Max
$$z = 4x_1 + 3x_2$$

subject to
 $x_1 + x_2 \le 8$
 $2x_1 + x_2 \le 10$
 $x_1 \ge 0, x_2 \ge 0.$

Starting with the b.f.s. corresponding to the corner point $(x_1 = 0, x_2 = 8)$ use the simplex algorithm to determine its optimal solution. (Do NOT use the graphical method.) [5]

- 4. Give an example of each of the following (if no such example is possible, give reasons for the same):
 - (i) an inner product space which is not a normed linear space.
 - (ii) a norm $||\cdot||$ which does not satisfy the parallelogram law.
 - (iii) a (3×3) nonsingular matrix A whose at least one eigenvalue is zero.
 - (iv) a set of three orthonormal vectors in \mathbb{R}^3 which does not constitute its basis.
 - (v) the orthogonal complement of the subspace $S = \{(x, y) : 3x + 4y = 0\}$ in \mathbb{R}^2 . [5]

5. (i) Solve the following LPP graphically:

Max
$$z = 4x_1 + 3x_2$$

subject to
 $2x_1 + x_2 + x_3 = 4$
 $-x_1 + x_2 - x_4 = 1$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$

(ii) Let $\{x_n\}$ be a sequence in a Hilbert space H. Let $\{x_n\} \to x$. Let $x, y \in H$. Show that $y \perp x_n$ and $x_n \to x$ together imply that $x \perp y$. [5]