## ELL780: Minor Test I

## August 29, 2017

## Maximum Marks: 25

1. Let $\mathbf{V}$ be the vector space of all $(2 \times 2)$ real matrices, under the usual operations of matrix 'addition' and scalar 'multiplication'. Let $\mathbf{M} \subseteq \mathbf{V}$ be given by

$$
\mathbf{M}=\left\{\mathbf{A}=\left(a_{i j}\right)_{2 \times 2}, a_{i j} \in \mathbb{R}, \mathbf{A}^{\mathrm{T}}=\mathbf{A}, \text { and } \operatorname{Trace}(\mathbf{A})=0\right\} .
$$

- Verify that $\mathbf{M}$ is a vector subspace of $\mathbf{V}$.
- Identify a basis of M.
- What is the dimension of $\mathbf{M}$ ?
- Can you state a general result with regard to the dimension of $\mathbf{M}$ if $\mathbf{V}$ happens to be the set of all $(n \times n)$ real matrices?

2. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be given by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+y+z}{x+y-z}
$$

Let $\left\{\binom{1}{1},\binom{1}{-1}\right\}$ be a basis for $\mathbb{R}^{2}$, and $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)\right\}$ be a basis for $\mathbb{R}^{3}$.

- Find the matrix $\mathbf{A}$ of the given linear transformation $T$.
- Determine the $\operatorname{Rank}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)$.

3. Let $P:\left(x_{1}, y_{1}, z_{1}\right)$ and $Q:\left(x_{2}, y_{2}, z_{2}\right)$ be two points in $\mathbb{R}^{3}$. Let

$$
d_{1}(P, Q)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|
$$

- Show that $\left(\mathbb{R}^{3}, d_{1}\right)$ is a metric space.
- In $\left(\mathbb{R}^{3}, d_{1}\right)$, give a rough sketch of the ball of radius 1 with centre as $(0,0,0)$.
- Identify a Cauchy sequence in $\left(\mathbb{R}^{3}, d_{1}\right)$.
- Identify a non-convergent sequence in $\left(\mathbb{R}^{3}, d_{1}\right)$.

4. Construct an example of each of the following (if no such example is possible, then appropriate reasons must be provided).
(i) a closed convex cone in $\mathbb{R}^{3}$.
(ii) a metric space $(X, d)$ in which every set $A \subseteq X$ is open as well as closed.
(iii) a continuous mapping $T:(X, d) \longrightarrow(Y, \hat{d})$ such that $B \subseteq Y$ is open and $A=T^{-1}(B) \subseteq$ $X$ is closed.
(iv) a set of four linearly independent vectors in $\mathbb{R}^{3}$.
(v) a set $A$ in $\mathbb{R}^{2}$ for which $\operatorname{Int}(A)=\emptyset$.
