ELL780: Minor Test I

August 29, 2017

Maximum Marks: 25

1. Let V be the vector space of all (2×2) real matrices, under the usual operations of matrix 'addition' and scalar 'multiplication'. Let $\mathbf{M} \subseteq \mathbf{V}$ be given by

$$\mathbf{M} = \left\{ \mathbf{A} = (a_{ij})_{2 \times 2}, a_{ij} \in \mathbb{R}, \mathbf{A}^{\mathrm{T}} = \mathbf{A}, \text{ and } Trace(\mathbf{A}) = 0 \right\}.$$

- Verify that \mathbf{M} is a vector subspace of \mathbf{V} .
- Identify a basis of **M**.
- What is the dimension of **M**?
- Can you state a general result with regard to the dimension of \mathbf{M} if \mathbf{V} happens to be the set of all $(n \times n)$ real matrices? [6]
- 2. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be given by

$$T\left(\begin{array}{c} x\\ y\\ z\end{array}\right) = \left(\begin{array}{c} x+y+z\\ x+y-z\end{array}\right).$$

Let
$$\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}$$
 be a basis for \mathbb{R}^2 , and $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\2 \end{pmatrix} \right\}$ be a basis for \mathbb{R}^3 .

- Find the matrix \mathbf{A} of the given linear transformation T.
- Determine the $Rank(\mathbf{A}^{\mathrm{T}}\mathbf{A})$.
- 3. Let $P: (x_1, y_1, z_1)$ and $Q: (x_2, y_2, z_2)$ be two points in \mathbb{R}^3 . Let

$$d_1(P,Q) = |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|.$$

- Show that (\mathbb{R}^3, d_1) is a metric space.
- In (\mathbb{R}^3, d_1) , give a rough sketch of the ball of radius 1 with centre as (0, 0, 0).
- Identify a Cauchy sequence in (\mathbb{R}^3, d_1) .
- Identify a non-convergent sequence in (\mathbb{R}^3, d_1) .
- 4. Construct an example of each of the following (if no such example is possible, then appropriate reasons must be provided).
 - (i) a closed convex cone in \mathbb{R}^3 .
 - (ii) a metric space (X, d) in which every set $A \subseteq X$ is open as well as closed.
 - (iii) a continuous mapping $T: (X, d) \longrightarrow (Y, \hat{d})$ such that $B \subseteq Y$ is open and $A = T^{-1}(B) \subseteq Y$ X is closed.
 - (iv) a set of four linearly independent vectors in \mathbb{R}^3 .
 - (v) a set A in \mathbb{R}^2 for which $Int(A) = \emptyset$.

[6]

[6]

[7]