ELL780: Minor Test II

October 4, 2017

Maximum Marks: 25

1. Let

$$A = \left[\begin{array}{rrrr} -1 & 1 & 1 & 0 \\ 2 & -1 & 0 & 1 \end{array} \right].$$

- (i) Find the SVD (in compact form) of A.
- (ii) Obtain the generalised inverse A^+ of A.
- (iii) Use A^+ to find the minimum 2-norm solution of the system

$$-x_1 + x_2 + x_3 = 1$$

$$2x_1 - x_2 + x_4 = 2.$$

2. Consider the inner product space (ℝ², <, >). Let S = {(x, y) : 2x - y = 0} ⊆ ℝ².
(i) Show that S is a subspace of ℝ².

- (I) Show that S is a subspace of \mathbb{R} .
- (ii) Obtain S^{\perp} and show that S^{\perp} is also a subspace of $\mathbb{R}^2.$
- (iii) Sketch S and S^{\perp} in \mathbb{R}^2 .
- (iv) Obtain a basis of S^{\perp} .

(Here S^{\perp} denotes the orthogonal complement of S.)

- 3. Consider normed linear spaces (ℝ², || · ||₁) and (ℝ², || · ||₂).
 Show that S ⊆ ℝ² is open in (ℝ², || · ||₁) if and only if it is open in (ℝ², || · ||₂). Is S also open in (ℝ², || · ||_∞)? Give reasons. [5]
- 4. Is the following a convex optimisation problem? Give reasons for your answer.

$$\max 4x_{1} + 3x_{2} - 2x_{1}^{2} - 4x_{2}^{2}$$

Subject to
$$x_{1}^{2} + x_{2}^{2} \le 1$$

$$x_{2} \le x_{1}^{2}$$

$$x_{2} \ge 0.$$

[5]

[5]

[5]

5. Are the following statements true? Give reasons for your answer.

(i) A and A^{T} have the same SVD (in compact form).

(ii) Let A be a (3×3) real symmetric matrix with eigenvalues -2, 0, and 3. Let $B = I + A^2$. Then B is a positive definite matrix.

- (iii) $(\mathbb{R}^2, \|\cdot\|_1)$ is a Hilbert space.
- (iv) The function $f(x) = 4e^{2x} + 3e^{-2x}, x \in \mathbb{R}$ is a convex function.
- (v) $\max_{(x_1,x_2)} (4x_1 + 3x_2 6) = \min_{(x_1,x_2)} (-4x_1 3x_2) + 6.$ [5]