ELL780: Minor Test II

October 4, 2017

Maximum Marks: 25

1. Let

$$
A=\left[\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right]
$$

(i) Find the SVD (in compact form) of A.
(ii) Obtain the generalised inverse A^{+}of A.
(iii) Use A^{+}to find the minimum 2-norm solution of the system

$$
\begin{aligned}
-x_{1}+x_{2}+x_{3} & =1 \\
2 x_{1}-x_{2}+x_{4} & =2
\end{aligned}
$$

2. Consider the inner product space $\left(\mathbb{R}^{2},<,>\right)$. Let $S=\{(x, y): 2 x-y=0\} \subseteq \mathbb{R}^{2}$.
(i) Show that S is a subspace of \mathbb{R}^{2}.
(ii) Obtain S^{\perp} and show that S^{\perp} is also a subspace of \mathbb{R}^{2}.
(iii) Sketch S and S^{\perp} in \mathbb{R}^{2}.
(iv) Obtain a basis of S^{\perp}.
(Here S^{\perp} denotes the orthogonal complement of S.)
3. Consider normed linear spaces $\left(\mathbb{R}^{2},\|\cdot\|_{1}\right)$ and $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$.

Show that $S \subseteq \mathbb{R}^{2}$ is open in $\left(\mathbb{R}^{2},\|\cdot\|_{1}\right)$ if and only if it is open in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$. Is S also open in $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$? Give reasons.
4. Is the following a convex optimisation problem? Give reasons for your answer.

$$
\begin{aligned}
& \max 4 x_{1}+3 x_{2}-2 x_{1}^{2}-4 x_{2}^{2} \\
& \text { Subject to } \\
& x_{1}^{2}+x_{2}^{2} \leq 1 \\
& x_{2} \leq x_{1}^{2} \\
& x_{2} \geq 0 .
\end{aligned}
$$

5. Are the following statements true? Give reasons for your answer.
(i) A and A^{T} have the same SVD (in compact form).
(ii) Let A be a (3×3) real symmetric matrix with eigenvalues $-2,0$, and 3 . Let $B=I+A^{2}$. Then B is a positive definite matrix.
(iii) $\left(\mathbb{R}^{2},\|\cdot\|_{1}\right)$ is a Hilbert space.
(iv) The function $f(x)=4 e^{2 x}+3 e^{-2 x}, x \in \mathbb{R}$ is a convex function.
(v) $\max _{\left(x_{1}, x_{2}\right)}\left(4 x_{1}+3 x_{2}-6\right)=\min _{\left(x_{1}, x_{2}\right)}\left(-4 x_{1}-3 x_{2}\right)+6$.
