ELL780: Major Test

November 22, 2017

Maximum Marks: 50

1. Consider the nonlinear programming problem ($N L P$):

$$
\begin{aligned}
& \operatorname{Max} z=\alpha x_{1}+\beta x_{2} \\
& \text { s.t. } \\
& \quad x_{1}^{2}+x_{2}^{2} \leq 5 \\
& \quad x_{1}-x_{2} \leq 2 .
\end{aligned}
$$

(i) Write the KKT conditions for the given ($N L P$).
(ii) Determine all possible values of α and β for which $\left(\bar{x}_{1}=1, \bar{x}_{2}=2\right)$ is optimal to the given $(N L P)$.
(iii) Write the Wolfe dual ($N L D$) of the given ($N L P$).
2. Let $\left(\mathbb{R}^{3},\|\cdot\|_{\infty}\right)$ be the given Normed Linear Space.
(i) Sketch the unit ball (i.e., ball with centre as $(0,0,0)$ and radius 1$)$ in $\left(\mathbb{R}^{3},\|\cdot\|_{\infty}\right)$.
(ii) Show that the sequence $\left\{\left(\frac{1}{n},-1, \frac{2}{n}\right)\right\}$ in $\left(\mathbb{R}^{3},\|\cdot\|_{\infty}\right)$ converges to $(0,-1,0) \in \mathbb{R}^{3}$.
(iii) Show that $\left(\mathbb{R}^{3},\|\cdot\|_{\infty}\right)$ is NOT an inner product space.
3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
(i) Obtain the SVD of A.
(ii) Write (without doing any computation) the SVD of A^{2}.
4. Consider the $L P P$:

$$
\begin{aligned}
& \operatorname{Max} z=4 x_{1}+3 x_{2} \\
& \text { s.t. } \\
& \quad 3 x_{1}+4 x_{2}=12 \\
& \quad 2 x_{1}-x_{2} \leq 12 \\
& \quad x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

(i) Determine the basic feasible solution (bfs) corresponding to the convex point ($x_{1}=4, x_{2}=$ $0)$.
(ii) Let the given $L P P$ be solved by the simplex algorithm starting with the corner point $\left(x_{1}=4, x_{2}=0\right)$. Write the initial simplex tableau. (Do NOT proceed any further even if needed.)
5. Consider the problem of minimisation of $f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+6 x_{2}^{2}-8 x_{1} x_{2}$ over $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
(i) Solve the given unconstrained optimisation problem (UMP) by Newton's method starting with $\mathbf{x}^{(0)}=\left(x_{1}^{(0)}=-5, x_{2}^{(0)}=10\right)$.
(ii) Let the same $(U M P)$ be solved by the Steepest Descent Method, starting with $\mathbf{x}^{(0)}=$ $\left(x_{1}^{(0)}=2, x_{2}^{(0)}=6\right)$. Obtain the next iterate $\mathbf{x}^{(1)}$ 。 (Do NOT proceed any further even if needed.)
6. Let X be a discrete random variable.

$$
\begin{array}{cccccc}
x & : & 0 & 1 & 2 & 3 \\
p(X=x) & : & 1 / 8 & 3 / 8 & 3 / 8 & 1 / 8 .
\end{array}
$$

(i) Determine the cumulative distribution function (c.d.f.) F of the random variable X.
(ii) Sketch the c.d.f. $F(x)$ of X.
(iii) Evaluate $P(1 \leq X<3)$.
(iv) Obtain $E(X)$ and $V(X)$.
7. Let $S=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}+x_{2} \leq 8\right)\right.$ or $\left.\left(2 x_{1}+x_{2} \leq 10\right), x_{1} \geq 0, x_{2} \geq 0\right\}$. Let $\operatorname{Conv}(S)$ denote the convex hull of S. Use the Wolfe restricted entry simplex algorithm to solve

$$
\begin{aligned}
& \operatorname{Max} 4 x_{1}^{2}+6 x_{2}^{2}-8 x_{1} x_{2} \\
& \quad \text { s.t. } \\
& \quad\left(x_{1}, x_{2}\right) \in \operatorname{Conv}(S) .
\end{aligned}
$$

Write only the first tableau. (Do NOT proceed any further even if needed.)
8. Are the following statements true? Give reasons for your answer.
(i) For the constraints $x_{1}-x_{2}+x_{3}=2, x_{1} \geq 0, x_{2} \geq 0$; the point ($\bar{x}_{1}=4, \bar{x}_{2}=2, \bar{x}_{3}=0$) is a basic feasible solution.
(ii) The set $S=\left\{\left(x_{1}, x_{2}\right): x_{2}-x_{1}^{2} \leq 0,-1 \leq x_{1} \leq 2\right\}$ can NOT be the feasible region of a convex optimisation problem.
(iii) Let $V(X)$ denote the variance of a random variable X. Then

$$
V(a X+b Y)=a V(X)+b V(Y)+2 a b \operatorname{Cov}(X, Y)
$$

(iv) The system of equations

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=8 \\
2 x_{1}-x_{2}+2 x_{3}=10
\end{gathered}
$$

has infinitely many solutions.
(v) In a metric space (X, d) if $\left\{x_{n}\right\} \rightarrow x$ and $\left\{y_{n}\right\} \rightarrow y$ then $\left\{d\left(x_{n}, y_{n}\right)\right\} \rightarrow d(x, y)$ in \mathbb{R}.
(vi) Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$. Then the dimension of the null space of A is 2 .
(vii) Let V be the set of all (2×2) positive semidefinite matrices. Then V is a convex cone. (viii) Let $X \sim \mathcal{N}\left(\mu=100, \sigma^{2}=16\right)$. Let $Y=(2 X-3)$. Then $Y \sim \mathcal{N}\left(\mu=200, \sigma^{2}=64\right)$. [8]

