ELL780: Minor Test I

August 30, 2015

Maximum Marks: 20

1. (i) Let (P) be the statement in English with $(P):$ function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at x_{0}. Then, construct an equivalent statement (Q) using $\epsilon-\delta$ with necessary explanations, if there be any.
(ii) Construct the negation $(\not Q)$ with necessary changes. Assume missing data, if there be any.
2. Let U be the universal set and X, Y be subsets of U. Then, show that $(X \cup Y)^{\complement}=X^{\complement} \cap Y^{\complement}$ and $(X \cap Y)^{\complement}=X^{\complement} \cup Y^{\complement}$.
3. (i) Consider the statement:

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2} ; \forall x_{1}, x_{2} \in \mathcal{D}(f)
$$

Write down another statement which is equivalent to this one.
(ii) Let $f: \mathcal{D}(f) \subset \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathcal{R}(f) \subsetneq \mathbb{R}$. Under what conditions is $f: \mathcal{D}(f) \rightarrow \mathcal{R}(f)$ invertible from $\mathcal{D}(f)$ onto $\mathcal{R}(f)$? Is f also invertible as a function from $\mathcal{D}(f)$ into \mathbb{R} ? Justify your answer.
4. (i) Examine the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by:

$$
f(x, y)= \begin{cases}\frac{x^{6}}{\left(y-x^{3}\right)^{2}+x^{7}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{cases}
$$

Find the limits
(a) $\lim _{x \rightarrow 0} f(x, m x)$ for $m \in \mathbb{R}$;
(b) $\lim _{y \rightarrow 0} f(m y, y)$;
(c) $\lim _{y \rightarrow 0} f(0, y)$;
(b) $\lim _{x \rightarrow 0} f(x, 0)$.

Do these results imply that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists?
(ii) Show that $f(x)=1-|x|$ is continuous on \mathbb{R}, but not differentiable on \mathbb{R}.
5. (i) Examine the function $f(x)=|1-|x||$ on $[-1,1]$ for relative extrema, if there be any, with justification.
(ii) Find the critical points of the function $f(x)=|1-|x||$ on $[-1,1]$.
6. (i) State the three most important properties of the set \mathbb{Q} of rational numbers. State the property which \mathbb{Q} does not possess.
(ii) Let $Q_{0}=\left\{x: x \in \mathbb{Q}\right.$ s.t. $\left.x^{2}<3\right\}$. Then, does there exist $\sup Q_{0}$ in \mathbb{Q} ?
7. (i) Let $f: X \rightarrow \mathbb{R}$. Define
(a) $\sup _{x \in X} f(x)$,
(b) $\inf _{x \in X} f(x)$ in \mathbb{R}.
(ii) Let $f: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}$ defined by:

$$
f(x)=\frac{1}{e^{x}}
$$

Does it have a maximum in $\overline{\mathbb{R}}$?
8. (i) Let f be a bounded real-valued function. Then, show that (a) $\sup _{x \in X} f(x)=-\inf _{x \in X}(-f(x))$,
(b) $\inf _{x \in X} f(x)=-\sup _{x \in X}(-f(x))$.
(ii) Suppose $f(x) \leq g(x)$, where g is bounded above; do $\sup f(x)$, $\sup g(x)$ exist and if they exist, how are they related? Prove the result.

