ELL780: Minor Test I

August 30, 2015

Maximum Marks: 20

1. (i) Let (P) be the statement in English with (P): function $f : \mathbb{R} \to \mathbb{R}$ is continuous at x_0 . Then, construct an equivalent statement (Q) using $\epsilon - \delta$ with necessary explanations, if there be any. [2]

(ii) Construct the negation (Q) with necessary changes. Assume missing data, if there be any. [1]

- 2. Let U be the universal set and X, Y be subsets of U. Then, show that $(X \cup Y)^{\complement} = X^{\complement} \cap Y^{\complement}$ and $(X \cap Y)^{\complement} = X^{\complement} \cup Y^{\complement}$. [2]
- 3. (i) Consider the statement:

$$f(x_1) = f(x_2) \implies x_1 = x_2; \ \forall x_1, x_2 \in \mathcal{D}(f).$$

Write down another statement which is equivalent to this one.

[1]

(ii) Let $f : \mathcal{D}(f) \subset \mathbb{R} \to \mathbb{R}$ such that $\mathcal{R}(f) \subsetneq \mathbb{R}$. Under what conditions is $f : \mathcal{D}(f) \to \mathcal{R}(f)$ invertible from $\mathcal{D}(f)$ onto $\mathcal{R}(f)$? Is f also invertible as a function from $\mathcal{D}(f)$ into \mathbb{R} ? Justify your answer. [1]

4. (i) Examine the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by:

$$f(x,y) = \begin{cases} \frac{x^6}{(y-x^3)^2+x^7} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0). \end{cases}$$

Find the limits

- (a) $\lim_{x\to 0} f(x, mx)$ for $m \in \mathbb{R}$;
- (b) $\lim_{y\to 0} f(my, y);$
- (c) $\lim_{y\to 0} f(0,y);$
- (b) $\lim_{x \to 0} f(x, 0)$.

Do these results imply that $\lim_{(x,y)\to(0,0)} f(x,y)$ exists?

[3]

- (ii) Show that f(x) = 1 |x| is continuous on \mathbb{R} , but not differentiable on \mathbb{R} . [1]
- 5. (i) Examine the function f(x) = |1 |x|| on [-1, 1] for relative extrema, if there be any, with justification. [1]
 - (ii) Find the critical points of the function f(x) = |1 |x|| on [-1, 1]. [1]
- 6. (i) State the three most important properties of the set Q of rational numbers. State the property which Q does *not* possess. [1]

(ii) Let
$$Q_0 = \{x : x \in \mathbb{Q} \text{ s.t. } x^2 < 3\}$$
. Then, does there exist $\sup Q_0$ in \mathbb{Q} ? [1]

7. (i) Let $f: X \to \mathbb{R}$. Define (a) $\sup_{x \in X} f(x)$, (b) $\inf_{x \in X} f(x)$ in \mathbb{R} . [1]

(ii) Let $f: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ defined by:

$$f(x) = \frac{1}{e^x}$$

Does it have a maximum in $\overline{\mathbb{R}}$?

[1]

8. (i) Let f be a bounded real-valued function. Then, show that (a) $\sup_{x \in X} f(x) = -\inf_{x \in X} (-f(x)),$ (b) $\inf_{x \in X} f(x) = -\sup_{x \in X} (-f(x)).$ [1]

(ii) Suppose $f(x) \leq g(x)$, where g is bounded above; do $\sup f(x)$, $\sup g(x)$ exist and if they exist, how are they related? Prove the result. [2]