ELL780: Minor Test II

October 8, 2015

Maximum Marks: 20

1. Consider the LPP

Max $z = 4x_1 + 3x_2$ subject to $x_1 + x_2 \le 8$ $2x_1 + x_2 \le 10$ $x_1 \ge 0, x_2 \ge 0$

(i) Identify the b.f.s. $(x_B = B^{-1}b, x_R = 0)$ corresponding to the corner point $(x_1 = 0, x_2 = 8)$. [2]

(ii) Starting with the b.f.s. corresponding to the corner point $(x_1 = 0, x_2 = 8)$ and using the simplex algorithm, obtain an optimal solution of the given LPP. [3]

2. Use the simplex algorithm to show that the lines $x_1 + x_2 = 1$ and $2x_1 + x_2 = 4$ do not intersect in the first quadrant. [5]

3. Give the Lebesgue measure of each of the following sets, with justification:

(i) [5, 10[

- (ii) $\{5, 6, 7, 8, 9, 10\}$
- (iii) $[5, 10] \times] 3, -2[$
- (iv) { $x: x = y/2z; y, z \in \mathbb{N}$ }
- 4. Check for uniform continuity of f(x) for $x \in S$ in the following instances; in each case, either prove or disprove.

(i) $f(x) = x^2, S = \{x \in \mathbb{R} : 0 < x < 4\}$ [1]

 $[\mathbf{2}]$

(ii) Given
$$|f(x_1) - f(x_2)| \le M |x_1 - x_2| \ \forall x_1, x_2 \in S$$
, where M is a positive constant [1.5]

(iii)
$$f(x) = \frac{1}{x}, S =]0, \infty[$$
 [1.5]

- 5. For which real numbers x do the vectors (x, 1, 1, 1), (1, x, 1, 1), (1, 1, x, 1), and (1, 1, 1, x) not form a basis of \mathbb{R}^4 ? For each such value of x that you find, what is the dimension of the subspace of \mathbb{R}^4 spanned by the given vectors? [2]
- 6. Let $S = \{1, x, x^2\}$ be the standard basis for P_2 , and suppose that $T : P_2 \to P_2$ is a linear operator such that T(1) = 3x 5, $T(x) = x^2 + 1$, and $T(x^2) = 3$.

(i) What is
$$T(2x^2 + 1)$$
? [0.5]

(ii) What is $T(a_0 + a_1 x + a_2 x^2)$? [0.5]

(iii) Find a matrix which induces T. (Hint: Think of 1 as the vector (1,0,0), x as (0,1,0), etc.) [1]