ELL780: Minor Test II

October 8, 2015

Maximum Marks: 20

1. Consider the LPP

$$
\begin{aligned}
& \operatorname{Max} \\
& \text { subject to } \\
& \\
& \qquad \begin{array}{l}
x_{1}+x_{2} \leq 8 \\
2 x_{1}+x_{2} \leq 10 \\
\\
x_{1} \geq 0, x_{2} \geq 0
\end{array}
\end{aligned}
$$

(i) Identify the b.f.s. $\left(x_{B}=B^{-1} b, x_{R}=0\right)$ corresponding to the corner point ($x_{1}=0, x_{2}=$ 8).
(ii) Starting with the b.f.s. corresponding to the corner point $\left(x_{1}=0, x_{2}=8\right)$ and using the simplex algorithm, obtain an optimal solution of the given LPP.
2. Use the simplex algorithm to show that the lines $x_{1}+x_{2}=1$ and $2 x_{1}+x_{2}=4$ do not intersect in the first quadrant.
3. Give the Lebesgue measure of each of the following sets, with justification:
(i) $[5,10[$
(ii) $\{5,6,7,8,9,10\}$
(iii) $[5,10] \times]-3,-2[$
(iv) $\{x: x=y / 2 z ; y, z \in \mathbb{N}\}$
4. Check for uniform continuity of $f(x)$ for $x \in S$ in the following instances; in each case, either prove or disprove.
(i) $f(x)=x^{2}, S=\{x \in \mathbb{R}: 0<x<4\}$
(ii) Given $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right| \forall x_{1}, x_{2} \in S$, where M is a positive constant
(iii) $\left.f(x)=\frac{1}{x}, S=\right] 0, \infty[$
5. For which real numbers x do the vectors $(x, 1,1,1),(1, x, 1,1),(1,1, x, 1)$, and $(1,1,1, x)$ not form a basis of \mathbb{R}^{4} ? For each such value of x that you find, what is the dimension of the subspace of \mathbb{R}^{4} spanned by the given vectors?
6. Let $S=\left\{1, x, x^{2}\right\}$ be the standard basis for P_{2}, and suppose that $T: P_{2} \rightarrow P_{2}$ is a linear operator such that $T(1)=3 x-5, T(x)=x^{2}+1$, and $T\left(x^{2}\right)=3$.
(i) What is $T\left(2 x^{2}+1\right)$?
(ii) What is $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)$?
(iii) Find a matrix which induces T. (Hint: Think of 1 as the vector $(1,0,0), x$ as $(0,1,0)$, etc.)

