


3. The Fibonacci numbers are defined as follows:

F0 = 0;

F1 = 1;

Fn = Fn−1 + Fn−2, ∀n ≥ 2.

(a) Give a recursive algorithm for computing the nth Fibonacci number which directly makes
use of the above recurrence relation. Write clear pseudocode, and analyse the time complexity
of your algorithm. [1.5]

(b) Illustrate the execution of the algorithm for n = 5, by drawing a recursion tree of all the
recursive calls made, and how the values returned from the base cases are propagated up the
tree. [1.5]

(c) Based on the answer to (b), do you think this is the most efficient way to compute
Fibonacci numbers? If not, why not? Point out specifically where you think the inefficiency
is. [1]

(d) Which algorithm design strategy discussed in class can be used to solve this problem
more efficiently? Using this strategy, give an O(n) algorithm to compute the nth Fibonacci
number. Write clear pseudocode, and explain why its time complexity is O(n). Illustrate the
execution of the algorithm for n = 5, clearly showing the sequence of subproblem solutions
that are computed, stored, and re-used. [3]

2


