ELL781: Minor Test 11

October 4, 2018

Maximum Marks: 20

1. Consider the below array.
[, 4, 7, 3, 10, 2, 6, 8, 1]

(a) Suppose the quicksort partition function is called on this entire array, with pivot value 5.
Show the state of the array through the sequence of iterations in the partition function. For
each iteration, the final locations of the two cursors (i and j) should be clearly indicated,
and then the state of the array after the swap should be shown for the next iteration.  [2]

(b) What is the total number of comparisons that happen during the sequence of iterations
of the partition function? And the total number of swaps? [1.5]

(c) What is the final value (index) returned by the partition function? Assume the above
array is indexed starting from 0. [0.5]

(d) Suppose we use mergesort instead of quicksort on the above array, making the first two
recursive calls on the subarrays from index 0 to index 4, and from index 5 to index 8. Obtain
the total number of comparisons that happen only in the final merge of these two subarrays,
after each has been recursively sorted. [1.5]

(e) Compare your answers to parts (b) and (d). Based on these, which algorithm appears to
be more efficient in terms of the number of comparisons/swaps involved? Is this consistent
with what was mentioned in class, in terms of which of the two has better average-case com-
plexity? If not, why do you think that is? Is there some other kind of cost that is not being
accounted for here, which might explain the discrepancy? [3]

2. Consider the below graph.

(a) Using the MST property, show that the edge (¢, d) must be part of some MST.  [1.5]

(b) Show the execution of Kruskal’s algorithm on the above graph. Initially, and at the
end of each iteration, draw the following: (i) the current spanning forest (set of connected
components); (ii) the current state of the priority queue (as a min-heap or partially ordered
tree). After the final iteration, (i) should correspond to the obtained MST. [3]



3. The Fibonacci numbers are defined as follows:

FOZO;
F1:1;
Fo=F, 1+ Fy 2, Vn2>2.

(a) Give a recursive algorithm for computing the n” Fibonacci number which directly makes
use of the above recurrence relation. Write clear pseudocode, and analyse the time complexity
of your algorithm. [1.5]

(b) Tllustrate the execution of the algorithm for n = 5, by drawing a recursion tree of all the
recursive calls made, and how the values returned from the base cases are propagated up the

tree. [1.5]

(c) Based on the answer to (b), do you think this is the most efficient way to compute
Fibonacci numbers? If not, why not? Point out specifically where you think the inefficiency

is. [1]

(d) Which algorithm design strategy discussed in class can be used to solve this problem
more efficiently? Using this strategy, give an O(n) algorithm to compute the n*" Fibonacci
number. Write clear pseudocode, and explain why its time complexity is O(n). Illustrate the
execution of the algorithm for n = 5, clearly showing the sequence of subproblem solutions
that are computed, stored, and re-used. [3]



