ELL781: Major Test

November 24, 2018

Maximum Marks: 24

- 1. Show that if T(n) = T(2n/5) + T(3n/5) + cn (c is a constant), then T(n) is $\Omega(n \log n)$, by:
 - (a) Taking the given solution to be a guess and showing its correctness.
 - (b) Getting to a closed form via substitution (draw the recursion tree). [2]

[2]

2. Consider the below directed, weighted graph.

- (a) Show the execution of Dijkstra's algorithm on this graph, taking the node labelled 1 as the source node. As was done in class, show a full table with rows corresponding to iterations, and columns showing for each iteration:
 - the set S of vertices to which shortest paths have been found,
 - ullet the specific vertex w which gets added to S in that iteration,
 - ullet the entries of the array D, which stores the cost of the current shortest path to each vertex, and
 - the entries of the array P, which stores the preceding vertex on the current shortest path to each vertex. [5]
- (b) As discussed in class, the actual sequence of vertices on the shortest path to the j^{th} vertex can be obtained by calling a function of the form path(j, P), where P is the array of preceding vertices as above. For the particular P just obtained, show the sequence of recursive calls and the output returned by the call path(5, P). [2]

3. Consider the below graph.

Obtain (showing the full sequence of edges added) spanning trees of this graph via the following algorithms (in all cases where there is a choice, assume that vertices/edges are examined in numerical order). Report the total cost of each spanning tree.

(a) An MST via Prim's algorithm.	[2]
121 P	

- (d) BFS, starting at vertex 1. [1.5]4. Recall the algorithm APPROX-VERTEX-COVER, which maintains a set of uncovered edges,
- and at each iteration picks one edge from this set at random and adds both its endpoints to the cover set.

 (a) A matching is a set of edges in a graph such that no two edges share a common vertex. A maximal matching is a matching to which no further edges can be added (while the interior).
 - maximal matching is a matching to which no further edges can be added (whilst maintaining the matching property). Prove that, for any input graph, the set of edges picked by APPROX-VERTEX-COVER (which we had denoted as A in class) forms a maximal matching of the given graph.

 [3]
 - (b) Give an example of a graph for which APPROX-VERTEX-COVER can never give the optimal solution, no matter what sequence of edges it may happen to pick. Explain/prove why this is so for your answer. [3]