
ELL781: Assignment 3

Last updated: 20-10-2021, 6:08pm

Maximum Marks: 10
Submission deadline: 10 November, 23:59

1 Problem statement

This assignment involves implementing the Prim and Kruskal algorithms for finding a Minimum
Spanning Tree (MST) of an undirected, weighted graph.

2 Procedure

Here are the steps you should follow for this assignment:

1. Prim’s algorithm: Start with the Pascal code given in Fig. 7.8 of the AHU book. Our aim
is to implement a more efficient version of this, in a programming language of your choice.
There is also a change to the input-output format: rather than just taking a cost matrix as
input and printing a set of edges as output, you need to take as input and return as output
instances of a GRAPH data structure. Here is how you should proceed (please follow these
steps carefully):

• First of all you need to implement the GRAPH Abstract Data Type (ADT) as an actual
data structure which allows for weighted, undirected graphs (you are NOT permitted
to use existing implementations or libraries). Remember, to fully describe a data struc-
ture, you need to specify what your cells (atomic data variables) consist of, what the
aggregation mechanism over those cells is, and what associated operations or functions
are available to manipulate the data structure. Please structure and document your
code so as to show all of these clearly for your data structure corresponding to the
GRAPH ADT. [1]

• Implement a PRIORITYQUEUE data structure. Please look at Sections 4.10 and 4.11 of
AHU for details on how this can be done. Your code should be well-commented and it
should be easy for anyone reading it to understand how each part works. [2]

• Now implement Prim’s algorithm using your two data structures as above. The PRIORITYQUEUE
data structure should be used in order to keep track of the lowest-cost edge from the
current set U to each vertex outside U . The notes shared at https://web.iitd.ac.in/

~sumeet/MIT6_046JS15_lec12.pdf should be useful for this purpose. Note that you
will need a DECREASE-KEY operation, in addition to the regular INSERT and DELETEMIN

operations. [2]

The key point to keep in mind is that your overall implementation needs to bemodular: separ-
ate GRAPH and PRIORITYQUEUE data structures each with a defined set of functions/operations,
and the main program (for Prim’s algorithm) must interact with the data structure only
through these functions.

1

https://web.iitd.ac.in/~sumeet/MIT6_046JS15_lec12.pdf
https://web.iitd.ac.in/~sumeet/MIT6_046JS15_lec12.pdf


2. Kruskal’s algorithm: Start with the pseudocode given in Fig. 7.10 of AHU. As discussed in
class, this is somewhat more complicated to implement than Prim’s algorithm. In partic-
ular, this pseudocode makes use of a new ADT, MFSET. So first of all this will need to be
implemented. Here is how you should proceed (please follow these steps carefully):

• Impelment an MFSET data structure. Look at Section 5.5 of AHU to understand what
this is and how it can be implemented. There are multiple ways of implementing it, you
may pick one as you prefer, but should aim to minimise time complexity. Again, the
code should be well-structured and commented for easy readability. [2]

• Using all 3 data structures you have developed as above, implement Kruskal’s algorithm.
Like for Prim’s algorithm, your input and output should be in the form of an instance
of your GRAPH data structure. [2]

3. Write a top-level program for creating a GRAPH instance and running both Prim’s and
Kruskal’s algorithms on it, and printing out the respective MSTs returned, along with the
total cost and runtime (in milliseconds) for each one. The input to this top-level program
should be an n × n cost matrix for a graph, n being the number of vertices (assume the
diagonal elements will always be 0, and elements corresponding to unconnected vertices will
be set to −1); this can be read in from a text file. A sample input file is provided at
http://web.iitd.ac.in/~sumeet/input_graph.txt), which corresponds to the graph de-
picted in Fig. 7.4 of AHU. [1]

2.1 Output format

Your top-level program should print out the MSTs from the Prim and Kruskal algorithms, in the
form of a sequence of n − 1 edges (vertex pairs), where n is the number of vertices in the input
graph. Each MST should be preceded by a line which gives the name of the algorithm that gener-
ated it, the total cost of the MST, and the runtime it took your code to generate the given MST.
For the sample input file linked to above, the output might look as follows:

Prim’s algorithm MST (total cost: 15; runtime: 17ms)

(1,3)

(2,3)

(2,5)

(3,6)

(4,6)

Kruskal’s algorithm MST (total cost: 15; runtime: 41ms)

(1,3)

(2,3)

(2,5)

(3,6)

(4,6)

3 What to submit

You need to submit all your code, properly commented and documented for easy readability
as described. Logically, your code should consist of the following 6 components/modules (it is
desirable to have each component in a separate file):

• An implementation of a data structure which implements the GRAPH ADT.

• An implementation of a data structure which implements the PRIORITYQUEUE ADT.

• An implementation of Prim’s algorithm, as a function which uses the above two data struc-
tures, and takes a GRAPH instance as input and returns another GRAPH instance as output.

2

http://web.iitd.ac.in/~sumeet/input_graph.txt


• An implementation of a data structure which implements the MFSET ADT.

• An implementation of Kruskal’s algorithm, as a function which uses the above three data
structures, and takes a GRAPH instance as input and returns another GRAPH instance as output.

• A top-level program which is a function that takes as input the cost matrix for a graph in the
given format, creates a GRAPH instance using it, calls the Prim and Kruskal functions on this
instance and gets the GRAPH instances returned by each of them (whilst also keeping track
of the runtime for each call), and prints out these MSTs in the given format along with the
respective total costs and runtimes.

Please package everything into a single zip/tar/rar file. You should also include a README file
which explains to the user exactly how they should use your code to generate the MSTs for a given
graph.

Submission will be via Moodle. The submission deadline for this assignment will be 10 Novem-
ber, 23:59. Any late submissions will be penalised, and may not be evaluated at all, depending
on the extent of delay.

4 Collaboration and re-use policy

You are free to discuss any aspect of the assignment with others; however, your code must be
entirely written by your group, without any copying from anywhere. You may re-use your own
code from earlier assignments for this course, but should ensure that it is adapted as per the
structuring requirements etc. specified here.

3

https://moodle.iitd.ac.in/

	Problem statement
	Procedure
	Output format

	What to submit
	Collaboration and re-use policy

