
ELL781: Assignment 2

Submission deadline: 17 October, 12:00 noon

Maximum Marks: 10

1 Problem statement

This assignment involves implementing the Prim and Kruskal algorithms for finding a Minimal
Spanning Tree (MST) of an undirected, weighted graph.

2 Procedure

Here are the steps you should follow for this assignment:

1. Prim’s algorithm: Start with the Pascal code given in Fig. 7.8 of the AHU book. This is
essentially what you need to implement, in a programming language of your choice (ideally
C/C++/Java). However, one change needs to be made: rather than just taking a cost matrix
as input and printing a set of edges as output, you need to take as input and return as output
instances of a GRAPH data structure. You may re-use your GRAPH data structure from
Assignment 1, but you are also allowed to make changes to it, if needed (for example, you
will need to allow for weighted, undirected graphs now). However, the modularity must be
preserved: a separate GRAPH data structure with a defined set of functions/operations, and
the main program (for Prim’s algorithm) must interact with the data structure only through
these functions. [2]

2. Kruskal’s algorithm: Start with the pseudocode given in Fig. 7.10 of AHU. As you will notice
right away, this is considerably more complicated to implement than Prim’s algorithm. In
particular, this pseudocode makes use of two new ADTs: PRIORITYQUEUE and MFSET.
So first of all these will need to be implemented. Here is how you should proceed (please
follow these steps carefully):

• Implement a PRIORITYQUEUE data structure. Please look at Sections 4.10 and 4.11
of AHU for details on how this can be done. We are not asking you to submit separate
written pseudocode this time; but your final code should be well-commented and it
should be easy for anyone reading it to understand how each part works. [2.5]

• Impelment an MFSET data structure. Look at Section 5.5 of AHU to understand what
this is and how it can be implemented. There are multiple ways of implementing it, you
may pick one as you prefer. Again, the code should be well-structured and commented
for easy readability. [2.5]

• Using both the above data structures, implement Kruskal’s algorithm. Like for Prim’s,
your input and output should be in the form of an instance of your GRAPH data
structure. [2]

3. Write a top-level program for creating a GRAPH instance and running both Prim’s and
Kruskal’s algorithms on it, and printing out the respective MSTs returned, along with the
total cost and runtime (in milliseconds) for each one. The input to this top-level program

1



should be an n × n cost matrix for a graph, n being the number of vertices (assume the
diagonal elements will always be 0, and elements corresponding to unconnected vertices
will be set to −1); this can be read in from a text file. A sample input file is provided
at http://web.iitd.ac.in/~sumeet/input_graph.txt), which corresponds to the graph
depicted in Fig. 7.4 of AHU. [1]

2.1 Output format

Your top-level program should print out the MSTs from the Prim and Kruskal algorithms, in the
form of a sequence of n − 1 edges (vertex pairs), where n is the number of vertices in the input
graph. Each MST should be preceded by a line which gives the name of the algorithm that gener-
ated it, the total cost of the MST, and the runtime it took your code to generate the given MST.
For the sample input file linked to above, the output might look as follows:

Prim’s algorithm MST (total cost: 15; runtime: 17ms)

(1,3)

(2,3)

(2,5)

(3,6)

(4,6)

Kruskal’s algorithm MST (total cost: 15; runtime: 41ms)

(1,3)

(2,3)

(2,5)

(3,6)

(4,6)

3 What to submit

You need to submit all your code, properly commented and documented for easy readability
as described. Logically, your code should consist of the following 6 components/modules (it is
desirable to have each component in a separate file):

• An implementation of a data structure which implements the GRAPH ADT (you may re-use
your code from Assignment 1, but will probably need to make some changes to it).

• An implementation of Prim’s algorithm, as a function which takes a GRAPH instance as
input and returns another GRAPH instance as output.

• An implementation of a data structure which implements the PRIORITYQUEUE ADT.

• An implementation of a data structure which implements the MFSET ADT.

• An implementation of Kruskal’s algorithm, as a function which uses the above two data
structures, and takes a GRAPH instance as input and returns another GRAPH instance as
output.

• A top-level program which is a function that takes as input the cost matrix for a graph in the
given format, creates a GRAPH instance using it, calls the Prim and Kruskal functions on
this instance and gets the GRAPH instances returned by each of them (whilst also keeping
track of the runtime for each call), and prints out these MSTs in the given format along with
the respective total costs and runtimes.

Please package everything into a single zip/tar/rar file. You should also include a README file
which explains to the user exactly how they should use your code to generate the MSTs for a given
graph.

Submission will be via Moodle (http://moodle.iitd.ac.in/); the exact submission procedure

2

http://web.iitd.ac.in/~sumeet/input_graph.txt
http://moodle.iitd.ac.in/


will be announced there in due course. The submission deadline for this assignment will be 17
October, 12:00 noon. Any late submissions will be penalised, and may not be evaluated at all,
depending on the extent of delay.

4 Collaboration policy

You are free to discuss any aspect of the assignment with others; however, your code must be
entirely written by you, without any copying from anywhere. We will be using plagiarism-detection
tools to ensure that this is the case, and any violations will lead to the loss of all marks for the
assignment, plus further disciplinary action depending on the severity of the offence.

3


	Problem statement
	Procedure
	Output format

	What to submit
	Collaboration policy

