ELL784: Minor Test

Sumeet Agarwal

September 27, 2022

Maximum marks: 20

Instructions:

- Please clearly indicate the question number, and part number if applicable, at the start of each response.
- Please read all questions carefully.
- Please ensure that your responses are to-the-point and that you write only what is asked for on the answer script you submit.
- Please try to be clear and careful with all mathematical notation, so that there is no ambiguity in the expressions/formulae you write down. Try to stick to the notation used in class, e.g., using an underbar to denote vector variables.

Questions

1. Suppose you are seeking to model the connection density on Facebook between any two districts of India: i.e., out of all possible friendships that could exist between those two districts, what fraction actually exist? This can be thought of as a regression problem: let each data point represent a pair of districts, and consist of one feature, denoted for the $n^{\text {th }}$ data point

$$
x_{n} \text { - the distance between the centres of the two districts (in } \mathrm{km} \text {); }
$$

and one label

$$
t_{n} \text { - the Facebook connection density between the } n^{\text {th }} \text { pair of districts. }
$$

I would like to model the relationship between the label and the features probabilistically, just like we did for curve fitting in class. For the deterministic part of the model, I assume that the expected connection density between a pair of districts is inversely proportional to the distance between them. So

$$
y\left(x_{n} ; w\right)=\frac{w}{x_{n}} .
$$

Note that w is scalar, as there is only one parameter here.
For the probabilistic part, I assume that the variation or noise around the expected value follows a zero-mean Gaussian distribution with precision β. This leads to the following overall model:

$$
p\left(t_{n} \mid x_{n}, w, \beta\right)=\sqrt{\frac{\beta}{2 \pi}} \exp \left(-\frac{\beta\left(t_{n}-w / x_{n}\right)^{2}}{2}\right)
$$

Given the above modelling setup, please answer the following questions, showing all working clearly and precisely.
1.1 Given a data set $X=\left\{x_{1}, \ldots, x_{N}\right\}, \mathbf{t}=\left(t_{1} ; \ldots ; t_{N}\right)$, which represents a set of district pairs for which you know the feature and label values, write down the expression for the likelihood as a function of the model parameter, i.e., $\mathcal{L}(w)$.
1.2 How will you convert this likelihood into a convenient error function, $E(w)$? Write down an expression for this $E(w)$.
1.3 Use the error function you have just obtained to derive the maximum likelihood estimate for the model parameter, i.e., $\hat{w}_{M L}$.
1.4 Try to interpret the estimate just obtained - explain, in words, what it is capturing about the data and why it makes sense. (Hint: what does it capture if you just have one data point?) [1]
1.5 Now suppose I wish to carry out Bayesian inference of w, and for this purpose use a zero-mean Gaussian prior with precision α :

$$
p(w \mid \alpha)=\sqrt{\frac{\alpha}{2 \pi}} \exp \left(-\frac{\alpha w^{2}}{2}\right)
$$

Using this prior and for the above given data set and probabilistic model, write down an expression for the posterior over w.
1.6 Convert the above expression for the posterior into a convenient error function, $\tilde{E}(w)$. Write down the expression for this $\tilde{E}(w)$.
1.7 Use the error function just obtained to derive the maximum a posteriori estimate for the model parameter, i.e., $\hat{w}_{M A P}$.
1.8 How can you control the strength of the prior?
2. Suppose you are seeking to fit a regression function of the form

$$
y(x ; \mathbf{w})=w_{0}+w_{1} x+w_{1}^{2} x^{2}
$$

to a data set consisting of feature-label pairs $\left(x_{n}, t_{n}\right)$, using sum-of-squares error with quadratic or L2 regularisation.
2.1 Obtain the stochastic gradient vector of the regularised error function with respect to \mathbf{w}, using a single data point $\left(x_{n}, t_{n}\right)$. Show your working clearly.
2.2 Suppose you want to learn \mathbf{w} via stochastic gradient descent. Write down the update rules for each of the weights from iteration τ to iteration $\tau+1$; e.g.,

$$
w_{0}^{(\tau+1)}=w_{0}^{(\tau)}+\square,
$$

where you need to fill in the blank. Similarly for the other weights.
3. Which of the following will generally have the effect of lowering the variance of a polynomial regression model, which is trained via gradient descent (assume a sufficiently small learning rate that the algorithm will not jump over minima)? Specify all that apply.
(a) Reducing the degree of the polynomial; (b) Increasing the degree of the polynomial; (c) Reducing the regularisation strength; (d) Increasing the regularisation strength; (e) Reducing the number of training iterations; (f) Increasing the number of training iterations.

