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Maximum marks: 20

Instructions:

• Please clearly indicate the question number, and part number if applicable, at the start
of each response.

• Please read all questions carefully.

• Please ensure that your responses are to-the-point and that you write only what is asked
for on the answer script you submit.

• Please try to be clear and careful with all mathematical notation, so that there is no
ambiguity in the expressions/formulae you write down. Try to stick to the notation used
in class, e.g., using an underbar to denote vector variables.

Questions

1. Suppose you are seeking to model the connection density on Facebook between any two districts of
India: i.e., out of all possible friendships that could exist between those two districts, what fraction
actually exist? This can be thought of as a regression problem: let each data point represent a pair of
districts, and consist of one feature, denoted for the nth data point

xn – the distance between the centres of the two districts (in km);

and one label

tn – the Facebook connection density between the nth pair of districts.

I would like to model the relationship between the label and the features probabilistically, just like
we did for curve fitting in class. For the deterministic part of the model, I assume that the expected
connection density between a pair of districts is inversely proportional to the distance between them.
So

y(xn;w) =
w

xn
.

Note that w is scalar, as there is only one parameter here.

For the probabilistic part, I assume that the variation or noise around the expected value follows a
zero-mean Gaussian distribution with precision β. This leads to the following overall model:

p(tn|xn, w, β) =

√
β

2π
exp

(
−β(tn − w/xn)

2

2

)
,

Given the above modelling setup, please answer the following questions, showing all working clearly
and precisely.
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1.1 Given a data set X = {x1, ..., xN}, t = (t1; ...; tN ), which represents a set of district pairs for
which you know the feature and label values, write down the expression for the likelihood as a function
of the model parameter, i.e., L(w). [1.5]

1.2 How will you convert this likelihood into a convenient error function, E(w)? Write down an
expression for this E(w). [2]

1.3 Use the error function you have just obtained to derive the maximum likelihood estimate for
the model parameter, i.e., ŵML. [2.5]

1.4 Try to interpret the estimate just obtained – explain, in words, what it is capturing about the
data and why it makes sense. (Hint: what does it capture if you just have one data point?) [1]

1.5 Now suppose I wish to carry out Bayesian inference of w, and for this purpose use a zero-mean
Gaussian prior with precision α:

p(w|α) =
√

α

2π
exp

(
−αw2

2

)
,

Using this prior and for the above given data set and probabilistic model, write down an expression
for the posterior over w. [2]

1.6 Convert the above expression for the posterior into a convenient error function, Ẽ(w). Write
down the expression for this Ẽ(w). [2]

1.7 Use the error function just obtained to derive the maximum a posteriori estimate for the model
parameter, i.e., ŵMAP . [2.5]

1.8 How can you control the strength of the prior? [1]

2. Suppose you are seeking to fit a regression function of the form

y(x;w) = w0 + w1x+ w2
1x

2

to a data set consisting of feature-label pairs (xn, tn), using sum-of-squares error with quadratic or L2
regularisation.

2.1 Obtain the stochastic gradient vector of the regularised error function with respect to w, using
a single data point (xn, tn). Show your working clearly. [2]

2.2 Suppose you want to learn w via stochastic gradient descent. Write down the update rules for each
of the weights from iteration τ to iteration τ + 1; e.g.,

w
(τ+1)
0 = w

(τ)
0 + ,

where you need to fill in the blank. Similarly for the other weights. [2]

3. Which of the following will generally have the effect of lowering the variance of a polynomial regression
model, which is trained via gradient descent (assume a sufficiently small learning rate that the algorithm
will not jump over minima)? Specify all that apply. [1.5]

(a) Reducing the degree of the polynomial; (b) Increasing the degree of the polynomial; (c) Reducing
the regularisation strength; (d) Increasing the regularisation strength; (e) Reducing the number of
training iterations; (f) Increasing the number of training iterations.
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