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Section 1.

1. Recall the two animal learning examples we discussed: the rats who learn to avoid poisnous baits, and
the pigeons who develop the superstition that a certain activity leads to them being rewarded with
food.

(a) What did we infer from these examples about the kinds of principles a theory of (successful) learning
should be aiming to formalise and enunciate? [2]

(b) Recall that while the rats learn to associate the consumption of poisoned food with the nausea
that follows it, they fail to learn associations between food and electric shock, or between sound and
nausea. What does this observation specifically tell us about how we should seek to develop a theory
of learning? [1.5]

2. Consider the papaya classification example we used in class. Suppose we have two real-valued features,
colour (x1) and softness (x2), and a binary class label: tasty (1) / not tasty (0). We choose to apply
the inductive bias of only considering the hypothesis class of axis-aligned rectangles. Formally, an
axis-aligned rectangle is characterised by its x1- and x2-axis bounds, and given four real numbers
a1, a2, b1, b2 such that a1 ≤ a2 (x1 bounds) and b1 ≤ b2 (x2 bounds), we can define the corresponding
hypothesis as

h(a1,a2,b1,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ a2 and b1 ≤ x2 ≤ b2;
0 otherwise.

Our full hypothesis space then becomes:

H = {h(a1,a2,b1,b2) : a1 ≤ a2, and b1 ≤ b2}.

(a) Suppose we define our learning algorithm (A) to be such that it returns the axis-aligned rectangle
with the smallest area which encloses all the instances of tasty papayas in the training set S,
sampled i.i.d. from the data-generating distribution D, f (assume realisability). Show that A ∈
ERMH. [2.5]

(b) Now we want to show that A is a PAC learner for H, under the realisability assumption. Towards
this end, attempt the following steps.

i. Under realisability, we must have f ∈ H. So let f = h(a∗
1 ,a

∗
2 ,b

∗
1 ,b

∗
2)

. Show that the rectangle
corresponding to the hypothesis returned byA always lies inside of the rectangle corresponding
to f . [1]

ii. Let a1 ≤ a∗2 be a number such that h1 = h(a1,a∗
2 ,b

∗
1 ,b

∗
2)

corresponds to a rectangle whose
probability mass under D is ε/4, for some ε > 0 (by choosing a1 sufficiently close to a∗2, we
can make the rectangle sufficiently thin for this to happen). Similarly, let

• a2 ≥ a∗1 be a number such that h2 = h(a∗
1 ,a2,b∗1 ,b

∗
2)

is a rectangle with probability mass
ε/4;

• b1 ≤ b∗2 be a number such that h3 = h(a∗
1 ,a

∗
2 ,b1,b

∗
2)

is a rectangle with probability mass ε/4;
and

• b2 ≥ b∗1 be a number such that h4 = h(a∗
1 ,a

∗
2 ,b

∗
1 ,b2)

is a rectangle with probability mass ε/4.

Show that if S happens to contain tasty papayas lying within all of the rectangles h1, h2, h3, h4,
then the true loss of hS = A(S) is bounded by ε. [5]

iii. So now we want the above condition (under which hS is approximately correct) to hold with
high (1− δ) probability, in order to establish PAC learnability. As a function of the number
of training samples N , upper bound the probability that S does not contain a tasty papaya
lying within the hi rectangle, ∀i ∈ {1, 2, 3, 4}. [3.5]
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iv. Obtain a union bound on the overall probability of the above condition which makes hS
approximately correct not holding. Note that this is the quantity we want to be bounded by
δ, for some δ ∈ (0, 1). [2.5]

v. Use the above union bound to obtain the minimal sample complexity, as a function of ε and
δ, which ensures that hS is probably approximately correct. Hence conclude the proof of H
being PAC learnable via A. [2]
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