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1. Consider binary classification problems on the learning domain X× {±1}. Prove that, for all finite X,
there exists a single-hidden-layer neural network architecture (V,E, sign) such that HV,E,sign shatters
the whole of X. What does the minimal width of the hidden layer need to be to allow for this? Show
all steps and working in your proof clearly. (Hint: Assume that you can choose any suitable input
representation for X.) [5]

2. Let H1 and H2 be two hypothesis classes with VC-dimension d1 and d2 respectively. Recall the growth
function bound given by Sauer’s Lemma: For any hypothesis class H with VC-dimension d, if N > d+1
then τH(N) ≤ (eN/d)d. Here

τH(N) = max
C⊂X:|C|=N

|HC |.

Suppose H1 and H2 are composable; and consider the hypothesis class H = H2 ◦H1, which consists of
the compositions of hypotheses from H1 and H2. More precisely, if the input space corresponding to
H1 is X, this can be stated as H = {h : ∃h1 ∈ H1, h2 ∈ H2 s.t. ∀x ∈ X, h(x) = h2(h1(x))}.
Obtain an upper bound, in terms of d1 and d2, on τH(N) for N > max(d1, d2) + 1, using Sauer’s
Lemma. Clearly show all steps and working. [5]

3. Consider the following bound on the expected true loss of a soft SVM we saw in class:

E
S∼DN

[
L0−1
D (sSVM(S))

]
≤ min

w:||w||≤B
LhingeD (w) +

√
8ρ2B2

N
.

(a) What is the key quantity which is missing from this bound? Explain the importance of it not being
part of the bound. [1.5]

(b) In training a soft SVM in practice, how does the value of B get optimised to keep this bound as
low as possible? Explain the relationship between the actual training/tuning process for an SVM, and
obtaining a good value for this generalisation bound. [2]

(c) Does the choice of B here (effected via the process described in the previous part) correspond to
some kind of prior knowledge? Explain what kind. Does the prior become stronger or weaker as B
increases? [1.5]

4. The Minimum Description Length (MDL) paradigm seeks to pick a hypothesis h from a countable class
H which minimises the following (probabilistic) upper bound on the true loss (for binary classification
with zero-one loss):

LD(h) ≤ LS(h) +

√
|h|+ ln(2/δ)

2N
,

where |h| is the length of d(h) under a description language d : H → {0, 1}∗.

(a) Prove that the above bound indeed holds with probability greater than 1 − δ over the choice
of training set S ∼ DN , for any prefix-free description language, and for all N , δ > 0, D, and h ∈ H.
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Hint: Make use of the Kraft Inequality (if S ⊆ {0, 1}∗ is prefix-free,
∑
σ∈S

(1/2|σ|) ≤ 1), Theorem 7.4 (pro-

vided in the Appendix to this paper), and of the Hoeffding inequality bound on UC sample complexity
for finite classes:

NUC
H (ε, δ) ≤ log(2|H|/δ)b2

2ε2
,

where b is a bound on the value of the loss function. [7]

(b) In interpreting MDL as a formalisation of Occam’s Razor, the implicit assumption is that ‘simpler’
hypotheses (as per some pre-existing notion of simplicity) have shorter description length. However,
the above bound holds for any prefix-free description language! So there is nothing to stop us from
picking a description language which gives longer descriptions to ‘simpler’ hypotheses, and then the
result of applying MDL would seemingly be the inverse of Occam’s Razor: we would be favouring less
simple hypotheses a priori. So the MDL paradigm alone cannot give us Occam’s Razor. What more is
needed to justify Occam’s Razor as an inductive principle? Can you connect this to Hume’s Problem
of Induction? [3]

5. Let H be the class of signed intervals over R, i.e., H = {ha,b,s : a ≤ b, s ∈ {−1, 1}} where ∀x ∈ R:

ha,b,s(x) =

{
s if x ∈ [a, b]
−s if x 6∈ [a, b]

Compute the VC-dimension of H, clearly showing all steps and reasoning. [5]

Appendix

Theorem 7.4 (SRM bound)

Let w : N → (0, 1) be such that
∞∑
n=1

w(n) ≤ 1. Let H =
⋃
n∈N
Hn, where each Hn enjoys uniform con-

vergence with sample complexity NUC
Hn

(ε, δ). Then, ∀δ ∈ (0, 1), ∀D, ∀n ∈ N, ∀h ∈ Hn:

|LD(h)− LS(h)| ≤ εn(N,w(n)δ)

with probability at least 1− δ over the choice of S ∼ DN .

Here
εn(N, δ) = min{ε ∈ (0, 1) : NUC

Hn
(ε, δ) ≤ N}.
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