
Kernel-based online machine learning and

support vector reduction

Sumeet Agarwal1, V. Vijaya Saradhi2 and Harish Karnick2

1- IBM India Research Lab, New Delhi, India.

2- Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur, Kanpur, India.

Abstract. We apply kernel-based machine learning methods to online

learning situations, and look at the related requirement of reducing the

complexity of the learnt classifier. Online methods are particularly useful

in situations which involve streaming data, such as medical or financial

applications. We show that the concept of span of support vectors can

be used to build a classifier that performs reasonably well while satisfying

given space and time constraints, thus making it potentially suitable for

such online situations.

1 Introduction

Kernel-based learning methods [6] have been successfully applied to a wide range
of problems. The key idea behind these methods is to implicitly map the input
data to a new feature space, and then find a suitable hypothesis in this space.
The mapping to the new space is defined by a function called the kernel function.

This paper uses kernels to build a classifier that can be used in situations
with streaming data. Such a classifier should consume limited space, and should
be able to update itself each time a new point (which it fails to classify correctly)
comes in. The number of support vectors (SVs henceforth), that determines clas-
sifier complexity, keeps increasing with increasing amounts of training data [7].
The problem is to reduce this complexity in order to meet the space constraints,
while minimizing the loss in generalization error. We look to address this prob-
lem based on a concept known as support vector span. Our experiments show
that often it is possible to reduce classifier complexity without significant loss in
performance.

The rest of this paper is organized as follows: Section 2 looks at the concept of
support vector span, which allows us to bound the generalization error. Section 3
looks at the basic problem of support vector reduction. In Section 4, we describe
the online learning framework, and present our proposed span-based algorithm,
comparing its performance with a standard method for this setting. Finally,
Section 5 summarizes the paper and gives the overall conclusions.

2 Span of Support Vectors

The concept of support vector span was defined by Vapnik and Chapelle [8].
They showed that this could be used to obtain a tight bound on the gener-
alization error of a given support vector machine (SVM henceforth). Suppose

that we have a set of n SVs denoted by (x1, y1), ..., (xn, yn) where xi denotes
a feature vector and yi the corresponding label (±1 for binary classification).
Also, let α0 = (α0

1, ..., α
0
n) be the set of coefficients of the SVs, for the optimal

classification function (hyperplane). For any SV xp, we define:

Λp =

n
∑

i=1,i 6=p

λixi : ∀i 6= p, α0
i + yiypα

0
pλi ≥ 0;

n
∑

i=1,i 6=p

λi = 1

as a constrained linear combination of the other SVs. Note that λi can be
negative. We then define Sp, which we call the span of the support vector xp,
as the distance between xp and Λp: S2

p = d2(xp,Λp) = minx∈Λp
‖x − xp‖

2 The
maximal value of Sp over all the SVs is called the S-span:

S = maxp∈Nn
Sp (1)

This definition of span holds for the case when the training data is linearly
separable (in the feature space); a slightly modified expression can be used to
account for non-separable data as well. Vapnik and Chapelle show that S ≤
DSV , where DSV is the diameter of the smallest sphere enclosing all the SVs.
Using this definition of span, they derive the following bound:

Epl−1
error ≤ E

(

SD

lρ2

)

(2)

This means that the expected value of generalization error for an SVM trained
on a training set of size l−1 is bounded by the expression on the right hand side,
where D is the diameter of the smallest sphere enclosing the training data, S is
the S-span of the support vector set, and ρ is the margin. These quantities are
all taken for training sets of size l; the difference in size of one element comes in
due to the fact that the bound is derived via a leave-one-out procedure on the
training data.

Vapnik and Chapelle also demonstrate via experiment that in practice, this
is a tight bound. We will employ their results to justify our span-based approach
to support vector reduction. For a proof of the stated bound see the original
paper [8].

3 Support Vector Reduction

Although SVMs offer state-of-the-art classification performance, they have not
been used much for applications where time efficiency is crucial, such as in
streaming or online settings. This is due to the fact that for large data sets
SVMs return a large number of SVs, and both the space and time requirements
of an SVM classifier scale linearly with the number of SVs. In fact, a recent
result by Steinwart [7] shows that the number of SVs is bounded from below by
a linear function in the size of the training set.

However, intuitively we expect that the support vector set should saturate
at some level. Once we have enough SVs to uniquely determine the separating
hyperplane further additions should be redundant. Thus, it is worthwhile to ex-
plore whether the number of SVs can be substantially pruned without significant
loss in generalization ability.

Burges [1] has demonstrated that this is feasible, though his method was too
time-consuming. Downs et al. [3] have proposed leaving out SVs that are linear
combinations of others by adjusting the coefficients of those that remain.

For streaming and online applications the data and consequently the size of
the training set keep increasing, and as per [7], the number of SVs will also
increase at least proportionately. Clearly, a method is needed to update the
classifier continuously. If there is a size limit of N on the SV set of the SVM
classifier, then for every subsequent misclassified data point we must decide
which one of the existing SVs (if any) will be replaced by the new point.

4 Streaming, Online Learning Applications

To formalize, assume we have a memory limit of N SVs. Initially, the memory
is empty and training data points keep streaming in. We cannot retrain the
SVM from scratch for every new data point since it would be prohibitively
expensive to do so. One approach is to use some kind of gradient-descent to
adjust the old coefficient (αi) values based on the extent to which the new
point was misclassified (note that points classified correctly can be ignored).
Simultaneously, we must also compute the multiplier for the new point. This
procedure continues as long as the number of SVs is less than N . Once we have
N SVs, we cannot add a point to the set without first discarding an existing SV.
We propose to use the S-span to decide which point to remove.

Let Xold be the set (of size N) of SVs, Sold the corresponding S-span, x

the new misclassified data point and xp ∈ Xold the point that leads to the least

S-span, say Snew, when x replaces xp in Xold (see algorithm below). We replace
xp by x if Snew < Sold. The basic objective is to not increase the bound on the
predicted generalization error at each step. From (2), it is clear that the expected
value of the generalization error depends on the value of S, the span of the set
of SVs. We cannot really control the variation in D and ρ as they will follow the
same trend irrespective of which vectors we throw out. However, the variation
in span is not bound to follow any such trend and therefore becomes the key
determining factor. So, our idea is to try and replace points in the set of SVs so as
to maximally reduce the S-span of the resulting set. The simplest replacement
strategy would be to leave out the oldest point in memory; this is essentially
what was done in the algorithm proposed by Kivinen et al. [4]. Although this
has the advantage of implicitly accounting for time-varying distributions, it also
runs the risk of discarding a more informative point in favor of a less useful one.
The span-based idea is unlikely to encounter this difficulty. We say unlikely
since we do not yet have a proof that the method will always work optimally.
However, our experiments with synthetic and natural data sets suggest that the

approach seems to do well. The algorithm is summarized below:

1. Let the current set of SVs in the memory be Xold = ((x1, y1), ..., (xN , yN)),
and let their multipliers be (α1, ..., αN) (we assume the memory is full;
otherwise, one can keep adding the incoming SVs until it is full). Let (x, y)

be an incoming data point. We first compute: f(x) =
∑N

i=1
αiyik(xi,x)

Here k is the usual kernel function.

2. If f(x) = y, we ignore it, return to step 1 and wait for the next point.

3. Compute Sold, the S−span of Xold. Remove support vector xi from Xold

and include the new data point x. Let the new set of SVs be:
Xi

new = {(x1, y1), · · · , (xi−1, yi−1), (xi+1, yi+1), · · · , (xN , yN), (x, y)}. Com-
pute the span corresponding to this set of SVs; call it Si.

4. Repeat the above step for all N data points. Find the least S−span among
the Si ∀ i = 1, 2, · · · , N . Let this be Sp; the corresponding support vector
removed is xp.

5. If Sp < Sold then we remove xp from the set by making αp = 0 while si-
multaneously adjusting the other coefficients in order to maintain the opti-
mality conditions for the SVM. This is done via the Poggio-Cauwenberghs
decremental unlearning procedure [2]. If Sp ≥ Sold do not include the new
point in the SV set.

6. If xp was removed in step 5, add the new point to the SV set, i.e. compute
the appropriate multiplier for it. Once again the other αi values must
be adjusted so as to maintain optimality. Use the Poggio-Cauwenberghs
incremental learning procedure [2] to carry out this adjustment.

7. We now have an updated set of N SVs, with the new point possibly replac-
ing one of the earlier ones. Run the current classifier on an independent
test set, to gauge its generalization performance. Return to step 1 and
await the next point.

We experimented with both static and time-varying distributions of data. For
the static case, a memory limit was fixed (smaller than the training set size),
and all the training data was streamed in. The final classifier obtained was then
tested on an independent test set drawn from the same distribution. This proce-
dure was repeated for varying values of the memory limit. For the time-varying
distribution case, the procedure used was similar, except that the training data’s
distribution varied gradually as it was streamed in. The test set was drawn from
the current distribution, i.e. the distribution prevailing at the end of the training
data stream. In this way, the ability of the algorithm to adapt to the variation
could be gauged. We compared our algorithm’s performance with the “Least Re-
cently Used” algorithm (LRU henceforth), which leaves out the oldest point in
memory whenever a new support vector comes in, and uses the same incremental
learning and decremental unlearning procedures [2] for coefficient adjustment.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 20 30 40 50 60 70 80 90 100

%

e
r
r
o
r

Memory Size (#SV Limit)

Span
LRU

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 20 30 40 50 60 70 80 90 100

%

e
r
r
o
r

Memory Size (#SV Limit)

Span
LRU

(a) Fixed Distribution (b) Varying Distribution

Fig. 1: In both (a) and (b), we have generated synthetic two-class data consisting
of two overlapping 3-D Gaussian ‘bells’, with 5% Gaussian noise added in.

The results are shown in Figure 1. It is evident that for both methods, gener-
alization error increases as the memory limit decreases; however, the span-based
method is observed to be more consistent in its performance as the memory
limit is reduced. For the static distribution the span-based method clearly out-
performs LRU. For the time-varying distribution, the span method competes
closely with LRU till a certain memory limit (around 35). When the memory
limit is reduced even further the span method’s performance breaks down. This
is because the span-based bounds are derived based on the assumption that the
data points are drawn from independent and identical distributions. The LRU
method works better for lower memory limits, because the method is specifically
designed to handle changing distributions. We have also experimented with the
benchmark data sets thyroid and waveform [5]; these data sets were used as
streaming data in our experiments. Results are given in Figure 2. In this case
too the span-based algorithm is seen to perform better than LRU. On the whole,
our proposed method gives encouraging results in an online setting. It is not as
fast as the simple LRU approach; but for small memory sizes, it competes very
well in terms of actual time taken.

The maximum number of SVs obtained in the case of the artificial data set is
89, when using the entire data set; using the span-based reduction technique, we
got 35 to SVs without significantly increasing generalization error, a reduction
of 61%. In the case of the real-world data sets, a maximum reduction of 71% of
the SVs is achieved without noticeably affecting the error rate.

5 Conclusions and Future Work

This work proposes a new learning procedure for a kernel-based classifier for
streaming, online data where the maximum size of the support vector set is
fixed. We use the concept of the span of the set of SVs to decide which support
vector to replace from the current set of support vectors when a new SV is

 10

 15

 20

 25

 30

 35

 20 40 60 80 100 120

%

e
r
r
o
r

Memory Size (#SV Limit)

Span
LRU

 5

 10

 15

 20

 25

 30

 35

 12 14 16 18 20 22 24 26 28 30

%

e
r
r
o
r

Memory Size (#SV Limit)

Span
LRU

(a) Waveform data set (b) Thyroid data set

Fig. 2: Results on benchmark data sets: waveform (training size: 400; test size:
4600) and thyroid (training size: 140; test size: 75).

desired to be added. While we do not have a formal theoretical justification for
the procedure, the experimental results are quite encouraging. Establishing a
performance guarantee in the form of an error bound remains to be done.

References

[1] C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of
support vector machines. In Neural Information Processing Systems, 1997.

[2] G. Cauwenberghs and T. Poggio. Incremental and decremental support vec-
tor machine learning. In Neural Information Processing Systems, 2000.

[3] Tom Downs, Kevin E Gates, and Annette Masters. Exact simplification of
support vector solutions. Journal of Machine Learning Research, 2:293–297,
2001.

[4] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.
IEEE Transactions on Signal Processing, 52(8):2165–2176, August, 2004.

[5] G. Rätsch. Benchmark repository. Technical report, Intelligent Data Analysis
Group, Fraunhofer-FIRST, 2005.

[6] B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press,
Cambridge, MA, USA, 2002.

[7] I. Steinwart. Sparseness of support vector machines. Journal of Machine

Learning Research, 4:1071–1105, 2003.

[8] V. Vapnik and O. Chapelle. Bounds on error expectation for SVM. Neural

Computation, 12:2013–2036, 2000.

